Abstract:
Memory encryption engine (MEE) integration technologies are described. A MEE system may include a MEE interface and a MEE core. The MEE interface may receive a data from an arbiter, where the data is selected by the arbiter from data at memory link queues. The MEE interface may adjust a timing rate to send the data to match a timing of a MEE core. The MEE core may be coupled to the MEE interface and may receive the data from the MEE interface.
Abstract:
Embodiments of apparatuses, articles, methods, and systems for secure vault service for software components within an execution environment are generally described herein. An embodiment includes the ability for a Virtual Machine Monitor, Operating System Monitor, or other underlying platform capability to restrict memory regions for access only by specifically authenticated, authorized and verified software components, even when part of an otherwise compromised operating system environment. The underlying platform to lock and unlock secrets on behalf of the authenticated/authorized/verified software component provided in protected memory regions only accessible to the authenticated/authorized/verified software component. Other embodiments may be described and claimed.
Abstract:
In an embodiment, a processor includes: at least one core to execute instructions; and a memory protection logic to encrypt data to be stored to a memory coupled to the processor, generate a message authentication code (MAC) based on the encrypted data, the MAC to have a first value according to a first key, obtain the encrypted data from the memory and validate the encrypted data using the MAC, where the MAC is to be re-keyed to have a second value according to a second key and without the encrypted data. Other embodiments are described and claimed.
Abstract:
Systems and methods may provide for identifying unencrypted data including a plurality of bits, wherein the unencrypted data may be encrypted and stored in memory. In addition, a determination may be made as to whether the unencrypted data includes a random distribution of the plurality of bits. An integrity action may be implemented, for example, when the unencrypted data includes a random distribution of the plurality of bits.
Abstract:
Systems and techniques for a System-on-a-Chip (SoC) security plugin are described herein. A component message may be received at an interconnect endpoint from an SoC component. The interconnect endpoint may pass the component message to a security component via a security interlink. The security component may secure the component message, using a cryptographic engine, to create a secured message. The secured message is delivered back to the interconnect endpoint via the security interlink and transmitted across the interconnect by the interconnect endpoint.
Abstract:
Embodiments of apparatuses, articles, methods, and systems for secure vault service for software components within an execution environment are generally described herein. An embodiment includes the ability for a Virtual Machine Monitor, Operating System Monitor, or other underlying platform capability to restrict memory regions for access only by specifically authenticated, authorized and verified software components, even when part of an otherwise compromised operating system environment. The underlying platform to lock and unlock secrets on behalf of the authenticated/authorized/verified software component provided in protected memory regions only accessible to the authenticated/authorized/verified software component. Other embodiments may be described and claimed.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of protecting domains of a multimode wireless radio transceiver. For example, an apparatus may include a protection domain controller (PDC) to restrict access of a configuration software to a protection domain of a plurality of protection domains of a multimode wireless radio transceiver based on a security level of the configuration software, wherein the protection domain includes one or more radio configuration parameters of the multimode wireless radio transceiver.
Abstract:
Systems and techniques for a System-on-a-Chip (SoC) security plugin are described herein. A component message may be received at an interconnect endpoint from an SoC component. The interconnect endpoint may pass the component message to a security component via a security interlink. The security component may secure the component message, using a cryptographic engine, to create a secured message. The secured message is delivered back to the interconnect endpoint via the security interlink and transmitted across the interconnect by the interconnect endpoint.
Abstract:
An example apparatus includes a scan manager to add a portion of a page of physical memory from a first sequence of mappings to a second sequence of mappings in response to determining the second sequence includes an address corresponding to the portion of the page of physical memory, and a scanner to scan the first sequence and the second sequence to determine whether at least one of first data in the first sequence or second data in the second sequence includes a pattern indicative of malware.
Abstract:
Technologies for execute only transactional memory include a computing device with a processor and a memory. The processor includes an instruction translation lookaside buffer (iTLB) and a data translation lookaside buffer (dTLB). In response to a page miss, the processor determines whether a page physical address is within an execute only transactional (XOT) range of the memory. If within the XOT range, the processor may populate the iTLB with the page physical address and prevent the dTLB from being populated with the page physical address. In response to an asynchronous change of control flow such as an interrupt, the processor determines whether a last iTLB translation is within the XOT range. If within the XOT range, the processor clears or otherwise secures the processor register state. The processor ensures that an XOT range starts execution at an authorized entry point. Other embodiments are described and claimed.