Abstract:
Methods, apparatus, systems and articles of manufacture to deduplicate duplicate memory in a cloud-computing environment are disclosed herein. An example apparatus to deduplicate duplicate memory comprises a parser to parse process information corresponding to instances of an application, a group generator to group process information into application groups based on the process information indicating instances corresponding to the same directory paths and application names, a data structure generator to generate a pair of binary search trees for an application group, and a merge controller to deduplicate duplicate memory contents detected in the application group.
Abstract:
Methods and apparatus to implement always-on context sensor hubs for processing multiple different types of data inputs are disclosed. An examples apparatus includes a first processor core to implement a host controller, and a second processor core to implement an offload engine. The host controller includes first logic to process sensor data associated with an electronic device when the electronic device is in a low power mode. The host controller is to offload a computational task associated with the sensor data to the offload engine. The offload engine includes second logic to execute the computational task.
Abstract:
A method and apparatus for cooperative scheduling of virtual machines. An exemplary method includes maintaining a CPU mask by a virtual machine manager, wherein the CPU mask comprises a real-time availability of each of a plurality of physical CPUs (PCPUs). A virtual machine (VM) is allowed to read the CPU mask.
Abstract:
Technologies for transferring offloading or on-loading data or tasks between a processor and a coprocessor include a computing device having a processor and a sensor hub that includes a coprocessor. The coprocessor receives sensor data associated with one or more sensors and detects events associated with the sensor data. The coprocessor determines frequency, resource usage cost, and power state transition cost for the events. In response to an offloaded task request from the processor, the coprocessor determines an aggregate load value based on the frequency, resource usage cost, and power state transition cost, and determines whether to accept the offloaded task request based on the aggregate load value. The aggregate load value may be determined as an exponential moving average. The coprocessor may determine whether to accept the offloaded task request based on a principal component analysis of the events. Other embodiments are described and claimed.
Abstract:
Technologies for transferring offloading or on-loading data or tasks between a processor and a coprocessor include a computing device having a processor and a sensor hub that includes a coprocessor. The coprocessor receives sensor data associated with one or more sensors and detects events associated with the sensor data. The coprocessor determines frequency, resource usage cost, and power state transition cost for the events. In response to an offloaded task request from the processor, the coprocessor determines an aggregate load value based on the frequency, resource usage cost, and power state transition cost, and determines whether to accept the offloaded task request based on the aggregate load value. The aggregate load value may be determined as an exponential moving average. The coprocessor may determine whether to accept the offloaded task request based on a principal component analysis of the events. Other embodiments are described and claimed.
Abstract:
Various embodiments are generally directed to implementing a secure mailbox in resource-constrained embedded systems. An apparatus to establish communication with a trusted execution environment includes a processor component, a co-processor component for executing the trusted execution environment, a host operating system component for execution by the processor component and including one or more application components, a mailbox array component for execution by the co-processor to store one or more mailbox components, each mailbox component being associated with a mailbox identification number, and a mailbox firewall component for execution by the co-processor component to facilitate communication between the one or more application components and the one or more mailbox components. Other embodiments are described and claimed.
Abstract:
Example methods and apparatus to manage object locks are disclosed. A disclosed example method includes intercepting a processor request to apply the lock on the object, identifying a performance history of the object based on a number of instances of contention, reducing computing resources of the processor by, when the number of instances is below a threshold value, generating a lock bypass for the object to cause speculative execution of target code within the object, and preventing speculative execution by applying the lock on the object when the number of instances is above the threshold value.
Abstract:
A point-of-sale device (“POS”) is described to include a secure transaction tunnel generator (“STG”). The STG may generate secure tunnels between peripherals attached to the POS and remote network resources. The secure tunnel may be generated using a trusted execution environment (“TEE”) of the POS. The STG may be alerted to the need to generate the secure tunnel based on an alert from the peripheral. The STG may execute under a protected environment and may generate two ends of a secure transaction tunnel using the TEE. The STG may also check the peripheral against whitelists and/or blacklists to determine whether the peripheral is allowed or not disallowed to participate in secure transactions. By generating the secure tunnel, the STG may facilitate performance of transactions in such a way that sensitive information is not available to unsecured processes in the POS. Other embodiments may be described and/or claimed.
Abstract:
Methods and apparatus to perform adaptive pre-fetch operations in managed runtime environments are disclosed herein. An example disclosed method includes determining an object size associated with a pre-fetch operation; comparing the object size to a first one of a series of thresholds having increasing respective values; when the object size is less than the first one of the series of thresholds, pre-fetching a first amount of stored data assigned to the first one of the series of thresholds; and when the object size is greater than the first one of the plurality of thresholds, comparing the object size to a next one of the series of thresholds.
Abstract:
Technologies include an interface processor configured to be communicatively coupled to a memory and a first processor. The interface processor is to obtain, from a first module compiled from a first software language, first data having a first native type of the first software language. The interface processor is further to convert the first data into second data having a first interface type, convert the second data having the first interface type into third data having a second native type of a second software language, and provide the third data to a second module associated with the second software language. The first software language may be compiled to WebAssembly binary code. The second software language may also be compiled to WebAssembly binary code and may be different than the first software language.