Abstract:
Systems and methods may provide a set of networked computational resources such as nodes that may be arranged in a hierarchy. A hierarchy of performance balancers receives performance samples from the computational resources beneath them and uses the performance samples to conduct a statistical analysis of variations in their performance. In one embodiment, the performance balancers steer power from faster resources to slower resources in order to enhance their performance, including in parallel processing.
Abstract:
Methods and apparatus to provide holistic global performance and power management are described. In an embodiment, logic (e.g., coupled to each compute node of a plurality of compute nodes) causes determination of a policy for power and performance management across the plurality of compute nodes. The policy is coordinated across the plurality of compute nodes to manage a job to one or more objective functions, where the job includes a plurality of tasks that are to run concurrently on the plurality of compute nodes. Other embodiments are also disclosed and claimed.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
Apparatus, systems, and methods provide dynamic spatial power steering among a plurality of power domains in the computer system on a per phase basis of a particular application. Dynamic spatial power steering may include, for example, determining a plurality of phases corresponding to an application comprising tasks for execution on a processing node. determining a spatial power distribution between a plurality of power domains on the processing node based on a performance metric for each phase, monitoring the application to detect a current phase, and applying the spatial power distribution correspond to the current phase to the plurality of power domains.
Abstract:
In one embodiment, a processor comprises: at least one core formed on a die to execute instructions; a first memory controller to interface with an in-package memory; a second memory controller to interface with a platform memory to couple to the processor; and the in-package memory located within a package of the processor, where the in-package memory is to be identified as a more distant memory with respect to the at least one core than the platform memory. Other embodiments are described and claimed.
Abstract:
Methods and apparatus to provide holistic global performance and power management are described. In an embodiment, logic (e.g., coupled to each compute node of a plurality of compute nodes) causes determination of a policy for power and performance management across the plurality of compute nodes. The policy is coordinated across the plurality of compute nodes to manage a job to one or more objective functions, where the job includes a plurality of tasks that are to run concurrently on the plurality of compute nodes. Other embodiments are also disclosed and claimed.
Abstract:
Methods and apparatus to provide holistic global performance and power management are described. In an embodiment, logic (e.g., coupled to each compute node of a plurality of compute nodes) causes determination of a policy for power and performance management across the plurality of compute nodes. The policy is coordinated across the plurality of compute nodes to manage a job to one or more objective functions, where the job includes a plurality of tasks that are to run concurrently on the plurality of compute nodes. Other embodiments are also disclosed and claimed.
Abstract:
Apparatus, systems, and methods provide an interface between a plurality of hardware resources of a node and a power manager. The interface is configured to define one or more resource groups to expose to the power manager for power measurement and control, assign the plurality of hardware resources to the one or more resource groups, and provide a power allowance to each resource group.
Abstract:
In one embodiment, a processor comprises: at least one core formed on a die to execute instructions; a first memory controller to interface with an in-package memory; a second memory controller to interface with a platform memory to couple to the processor; and the in-package memory located within a package of the processor, where the in-package memory is to be identified as a more distant memory with respect to the at least one core than the platform memory. Other embodiments are described and claimed.