Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Neighbor Awareness Networking (NAN) Data Link (NDL) power save. For example, an apparatus may include logic and circuitry configured to cause a first NAN device to set up an NDL with a second NAN device; to communicate a power save request between the first and second NAN devices during a Common Resource Block (CRB) of the NDL; to communicate a power save response between the first and second NAN devices, the power save response in response to the power save request; and to enter a power save state for at least part of the CRB.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating in a data path group. For example, an apparatus may include logic and circuitry configured to cause a Neighbor Awareness Networking (NAN) device to communicate during one or more Discovery Windows (DW) of a NAN cluster; and to communicate with one or more NAN devices of at least one data path group having a data path topology according to a scheduling scheme corresponding to the data path topology, the data path group including two or more NAN devices of the NAN cluster.
Abstract:
A network communication device comprises physical layer (PHY) circuitry configured to transmit and receive radio frequency electrical signals to communicate directly with one or more separate network devices; and medium access control layer (MAC) circuitry. The MAC circuitry is configured to: initiate transmission of a packetized message that includes a neighbor awareness networking (NAN) public action frame; receive a data connection request message from a second network device that includes one or more quality of service (QoS) requirements; initiate transmission of a data connection response message that includes data exchange time window information and channel information; and communicate data device-to-device with the second network device according to the data exchange time window information and channel information.
Abstract:
This disclosure describes methods, apparatuses, and systems related to signaling for concurrent operation and/or cancellation capabilities for termination of concurrent operations on networks (e.g., NAN, WLAN networks). In some implementations, systems and methods are provided for handling of time blocks that partially overlaps with the concurrent operations.
Abstract:
This disclosure describes methods, devices, and systems related to coordinating channel switch times and specifying device operation (for example, transmitting device operation) to ensure data reception by one or more devices (for example, receiving devices). A device may receive a data path setup request frame from a second device. The device may cause to send a data path setup response frame. The device may cause to establish a communication with the second device on a first channel. The device may cause to establish a communication with the second device on a second channel at a first time. The device may cause to wait, by the device, at least for a duration specified by a channel switch time (CST) parameter. The device may cause to send device data to the second device over the first channel or the second channel based at least in part on the CST parameter.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of terminating a Neighbor Awareness Networking (NAN) path. For example, an apparatus may include logic and circuitry configured to cause a first NAN device to transmit a message including a NAN Data Link (NDL) attribute corresponding to an NDL with a second NAN device, the NDL attribute including a Maximal (Max) Idle Period field to indicate a time period during which the second NAN device is allowed to refrain from transmitting over the NDL without the NDL being terminated; and to allow the first NAN device to terminate all NAN Data Paths (NDPs) over the NDL, if any frame is not received from the second NAN device for at least the time period indicated by the Max Idle Period field.
Abstract:
A network communication device comprises physical layer (PHY) circuitry configured to transmit and receive radio frequency electrical signals to communicate directly with one or more separate network devices; and medium access control layer (MAC) circuitry. The MAC circuitry is configured to: initiate transmission of a packetized message that includes a neighbor awareness networking (NAN) public action frame; receive a data connection request message from a second network device that includes one or more quality of service (QoS) requirements; initiate transmission of a data connection response message that includes data exchange time window information and channel information; and communicate data device-to-device with the second network device according to the data exchange time window information and channel information.
Abstract:
Technologies for multi-core wireless data transmission include a computing device having a processor with multiple cores and a wireless network interface controller (NIC). The computing device establishes multiple transmission queues that are each associated with a processor core. A driver receives a packet for transmission from an application in the execution context of the application, determines a current processor core of the execution context, adds metadata to the packet indicative of the current core, and enqueues the packet in the transmission queue associated with the current core. The wireless NIC merges the packet with packet data from the other transmission queues, adds a sequence number to each packet, and transmits each packet. The wireless NIC may determine the current processor core based on the metadata of the packet and raise an interrupt to the current processor core in response to transmitting the packet. Other embodiments are described and claimed.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating in a data path group. For example, an apparatus may include logic and circuitry configured to cause a Neighbor Awareness Networking (NAN) device to communicate during one or more Discovery Windows (DW) of a NAN cluster; and to communicate with one or more NAN devices of at least one data path group having a data path topology according to a scheduling scheme corresponding to the data path topology, the data path group including two or more NAN devices of the NAN cluster.
Abstract:
This disclosure describes methods, devices, and systems related to coordinating channel switch times and specifying device operation (for example, transmitting device operation) to ensure data reception by one or more devices (for example, receiving devices). A device may receive a data path setup request frame from a second device. The device may cause to send a service a data path setup response frame. The device may cause to establish a communication with the second device on a first channel. The device may cause to establish a communication with the second device on a second channel at a first time. The device may cause to wait, by the device, at least for a duration specified by a channel switch time (CST) parameter. The device may cause to send device data to the second device over the first channel or the second channel based at least in part on the CST parameter.