Abstract:
An apparatus and method are described for sponsoring service and preferential traffic handling, (i.e., data connectivity) by wireless transmit/receive units (WTRUs). A first WTRU may initiate user sponsoring of a second WTRU via an application server (AS). The first WTRU may receive a service trigger from the AS and forward the service trigger to the second WTRU. The second WTRU may then initiate a sponsored session with the AS using the service trigger in order to receive a service from the AS. The first WTRU may also request the AS to transfer a credit to the second WTRU. The AS may establish a direct communication link with a charging system including an online charging function (OCF) and a charging data function (CDF). The AS may send a request to a network to provide preferential traffic handling needed to deliver content to the second WTRU.
Abstract:
Techniques for configuring policy restriction are disclosed. A wireless transmit/receive unit (WTRU) may generate a user-defined policy profile, which is information provided by a user of the WTRU for configuration of parameters for a policy and/or charging control. The WTRU may send the user-defined policy profile to a network. The user-defined policy profile may be used along with network operator-provided policy rules by a policy decision function to set up policy rules for policy and/or charging control for the WTRU. The user-defined policy profile may configure a quality of service limit, a data usage limit, a time usage limit, or an access control. The user-defined policy profile may contain a policy profile identity (ID), a policy profile type information element, and a restricted subscriber ID. The WTRU may send the user-defined policy profile in an initial attach request message or subsequent messages or include it in an SIP REGISTER message.
Abstract:
A method and apparatus for triggering a machine type communication (MTC) wireless transmit/receive unit (WTRU) is disclosed. An MTC WTRU receives a message that indicates control period configuration information associated with an extended discontinuous reception (DRX) cycle. The MTC WTRU monitors a paging channel during a control period. The MTC WTRU connects, in response to receiving a paging message during the control period, to an MTC server and transmits data to the MTC server.
Abstract:
Procedures, mechanisms, methods, and techniques are provided that trigger power saving mode (PSM) functionality in the at least one wireless transmit receive units, group of WTRUs or subset of the group of WTRUs. The trigger may be in response to an application layer request to set one or more predetermined PSM settings, wherein the trigger originates from one or more application servers (APs) directed to a core network by way of an interface such as an SCEF that may be included on a device (e.g., a gateway, computing device, and/or the like) and may be configured for enabling the application server to request enabling and disabling PSM functionality.
Abstract:
Techniques may be used for restricted direct discovery in proximity services (ProSe). A ProSe function may receive from a discovery wireless transmit/receive unit (WTRU) a restricted ProSe Application identity (ID) of an application located at the discoverer WTRU requesting ProSe discovery. The ProSe function may derive a first and second ProSe codes for the discoveree WTRU and discoverer WTRU, and provide the ProSe codes to the discoverer and/or discoveree WTRUs. A ProSe application server may receive a revocation message from an announcing WTRU indicating a revoked WTRU. The ProSe application server may provide a ProSe discovery WTRU ID for the revoked WTRU to a ProSe Function. The ProSe function may instruct the announcing WTRU to stop announcing a ProSe code known by the revoked WTRU, and may provide a new ProSe code to at least one WTRU authorized to discover the announcing WTRU.
Abstract:
Techniques may be used for restricted direct discovery in proximity services (ProSe). A ProSe function may receive from a discovery wireless transmit/receive unit (WTRU) a restricted ProSe Application identity (ID) of an application located at the discoverer WTRU requesting ProSe discovery. The ProSe function may derive a first and second ProSe codes for the discoveree WTRU and discoverer WTRU, and provide the ProSe codes to the discoverer and/or discoveree WTRUs. A ProSe application server may receive a revocation message from an announcing WTRU indicating a revoked WTRU. The ProSe application server may provide a ProSe discovery WTRU ID for the revoked WTRU to a ProSe Function. The ProSe function may instruct the announcing WTRU to stop announcing a ProSe code known by the revoked WTRU, and may provide a new ProSe code to at least one WTRU authorized to discover the announcing WTRU.
Abstract:
Methods, apparatuses and systems for user-plane congestion management are provided. Among these method, apparatuses and systems is a method, implementable by a base station (and/or a serving gateway), for mitigating user plane congestion. The method may include sending a congestion indication to a core network; receiving a general packet radio system (GPRS) tunneling protocol (GTP) packet including an first internet protocol (IP) packet associated with a first flow within a bearer; obtaining, from a header of the GTP packet, an indicator indicative of a priority of the IP packet, wherein the indicator was inserted into the header of the GTP packet by the core network responsive to the congestion indication; and dropping any of the GTP packet and the first IP packet on condition that a priority of a second IP packet associated with second flow within the bearer takes precedence over the priority of the first IP packet.
Abstract:
Procedures, mechanisms, methods, and techniques are provided that trigger power saving mode (PSM) functionality in the at least one wireless transmit receive units, group of WTRUs or subset of the group of WTRUs. The trigger may be in response to an application layer request to set one or more predetermined PSM settings, wherein the trigger originates from one or more application servers (APs) directed to a core network by way of an interface such as an SCEF that may be included on a device (e.g., a gateway, computing device, and/or the like) and may be configured for enabling the application server to request enabling and disabling PSM functionality.
Abstract:
A method of communicating using proximity services (ProSe) is disclosed. A base station receives at least one aggregate maximum bit rate (AMBR) parameter from a network entity. The at least one AMBR parameter comprises a maximum bit rate that a first wireless transmit/receive unit (WTRU) can use for data sent on one or more ProSe bearers. The base station receives a request from the first WTRU to establish the one or more ProSe bearers with a second WTRU. The request comprises priority information of the one or more ProSe bearers determined by the first WTRU. The base station sends an indication to the first WTRU to establish a ProSe communication over the one or more ProSe bearers based on at least the AMBR parameter and the priority information of the one or more ProSe bearers.
Abstract:
In one aspect, a method of cell processing is disclosed, which includes disposing a plurality of cells on a substrate across which a plurality of projections are distributed and an electrically conductive layer at least partially coating said projections, exposing the cells to a cargo to be internalized by the cells, irradiating the substrate surface (and in particular the projections) with one or more laser pulses having a pulse width in a range of about 1 ns to about 1000 ns so as to facilitate uptake of the cargo by at least a portion of the cells (e.g., the cells positioned in the vicinity of the projections (e.g., within hundreds of nanometer (such as less than 100 nm) of the projections)). In some embodiments, the laser pulses have a pulse width in a range of about 10 ns to about 500 ns, e.g., in a range of about 5 ns to about 50 ns.