Abstract:
In some embodiments, Cu—In—Ga precursor films are deposited by co-sputtering from multiple targets. Specifically, the co-sputtering method is used to form layers that include In. The co-sputtering reduces the tendency for the In component to agglomerate and results in smoother, more uniform films. In some embodiments, the Ga concentration in one or more target(s) is between about 25 atomic % and about 66 atomic %. The deposition may be performed in a batch or in-line deposition system. If an in-line deposition system is used, the movement of the substrates through the system may be continuous or may follow a “stop and soak” method of substrate transport.
Abstract:
A method for fabricating high efficiency CIGS solar cells includes the deposition of a chalcogenide material using a reactive sputtering technique. The reactive sputtering process utilizes metal or metal alloy target sputtered in the presence of a reactive chalcogen source. The chalcogenide material is then heated before being annealed using a directed energy source such as a laser or flash lamp. The chalcogenide material is then passivated after the anneal step to address chalcogen vacancies in the material that may have formed during the anneal step.
Abstract:
Methods are described for forming CIGS absorber layers in TFPV devices with graded compositions and graded band gaps. Methods are described for utilizing Ag to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing Al to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing at least one of Na, Mg, K, or Ca to increase the band gap at the front surface of the absorber layer.
Abstract:
A method for fabricating high efficiency CIGS solar cells including the deposition of Ga concentrations (Ga/(Ga+In)=0.25-0.66) from sputtering targets containing Ga concentrations between about 25 atomic % and about 66 atomic %. Further, the method includes a high temperature selenization process integrated with a high temperature anneal process that results in high efficiency.
Abstract:
A method for fabricating high efficiency CIGS solar cells including the deposition of Ga concentrations (Ga/(Ga+In)=0.25−0.66) from sputtering targets containing Ga concentrations between about 25 atomic % and about 66 atomic %. Further, the method includes a high temperature selenization process integrated with a high temperature anneal process that results in high efficiency.
Abstract:
Methods for increasing the power output of a TFPV solar panel using thin absorber layers comprise techniques for roughening and/or texturing the back contact layer. The techniques comprise roughening the substrate prior to the back contact deposition, embedding particles in sol-gel films formed on the substrate, and forming multicomponent, polycrystalline films that result in a roughened surface after a wet etch step, etc.
Abstract:
Optical absorbers and methods are disclosed. The methods comprise depositing a plurality of precursor layers comprising one or more of Cu, Ga, and In on a substrate, and heating the layers in a chalcogenizing atmosphere. The plurality of precursor layers can be one or more sets of layers comprising at least two layers, wherein each layer in each set of layers comprises one or more of Cu, Ga, and In exhibiting a single phase. The layers can be deposited using two or three targets selected from Ag and In containing less than 21% In by weight, Cu and Ga where the Cu and Ga target comprises less than 45% Ga by weight, Cu(In,Ga), wherein the Cu(In,Ga) target has an atomic ratio of Cu to (In+Ga) greater than 2 and an atomic ratio of Ga to (Ga+In) greater than 0.5, elemental In, elemental Cu, and In2Se3 and In2S3.
Abstract:
Embodiments described herein provide methods for forming indium-gallium-zinc oxide (IGZO) devices. A substrate is provided. An IGZO layer is formed above the substrate. A copper-containing layer is formed above the IGZO layer. A wet etch process is performed on the copper-containing layer to form a source region and a drain region above the IGZO layer. The performing of the wet etch process on the copper-containing layer includes exposing the copper-containing layer to an etching solution including a peroxide compound and one of citric acid, formic acid, malonic acid, lactic acid, etidronic acid, phosphonic acid, or a combination thereof.
Abstract:
Optical absorbers, solar cells comprising the absorbers, and methods for making the absorbers are disclosed. The optical absorber comprises a semiconductor layer having a bandgap of between about 1.0 eV and about 1.6 eV disposed on a substrate, wherein the semiconductor comprises two or more earth abundant elements. The bandgap of the optical absorber is graded through the thickness of the layer by partial substitution of at least one grading element from the same group in the periodic table as the at least one of the two or more earth abundant elements.
Abstract:
Methods for HPC techniques are applied to the processing of site-isolated regions (SIR) on a substrate to form at least a portion of a TFT device used in display applications. The processing may be applied to at least one of gate electrode deposition, gate electrode patterning, gate dielectric deposition, gate dielectric patterning, metal-based semiconductor material (e.g. IGZO) deposition, metal-based semiconductor material (e.g. IGZO) patterning, etch stop deposition, etch stop patterning, source/drain deposition, source/drain patterning, passivation deposition, or passivation patterning. The SIRs may be defined during the deposition process with uniform deposition within each SIR or the SIRs may be defined subsequent to the deposition of layers wherein the layers are deposited with a gradient in one or more properties across the substrate.