Abstract:
Systems for measuring a distance include a lens positioned a distance above a target surface. A camera is configured to measure a first interference pattern between the lens and the target surface using a light source at a first wavelength and to measure a second interference pattern between the lens and the target surface using a light source at a second wavelength. A processor is configured to determine an absolute measurement of the distance between the lens and the target surface based on the first interference pattern and the second interference pattern.
Abstract:
A force detector and method for using the same includes a lens. A cantilever is disposed below the movable lens. A laser is disposed above the movable lens and is configured to emit a beam of light that reflects from a surface of the lens and the cantilever. A processor is configured to determine a force between the movable lens and the cantilever based on a change in phase in images produced by the light reflected from the spherical surface and the light reflected from the cantilever.
Abstract:
An electron microscope system and a method of measuring an aberration of the electron microscope system are disclosed. An aperture filters an electron beam at a diffraction plane of the electron microscope to pass through electrons having a selected energy and momentum. A displacement of an image of the passed electrons is measured at a detector in an image plane of the electron microscope. An aberration coefficient of the electron microscope is determined from the measured displacement and at least one of the energy and momentum of the passed electrons. The measured aberration can be used to alter a parameter of the electron microscope or an optical element of the electron microscope to thereby control the overall aberration of the electron microscope.
Abstract:
Methods and systems for measuring a distance include measuring a first interference pattern between a lens and a target surface using a light source at a first wavelength. A second interference pattern is measured between the lens and the target surface using a light source at a second wavelength, different from the first wavelength. An absolute measurement of a distance between the lens and the target surface is determined based on the first interference pattern and the second interference pattern.
Abstract:
Embodiments are further directed to an information processing system for generating a corrected image of a sample. The system includes a detector, a memory communicatively coupled to the detector, and a post-detection image processor communicatively coupled to the memory and the detector. The system is configured to perform a method that includes detecting, by the detector, data of a plurality of moving particles, wherein the data of the plurality of moving particles correspond to an uncorrected image of the sample, and wherein the uncorrected image includes defocus, astigmatism and spherical aberration. The method further includes generating, by the post-detection image processor, a corrected image of the sample based at least in part on processing the detected data of the plurality of moving particles.