Abstract:
A method for forming fins includes growing a SiGe layer and a silicon layer over a surface of a bulk Si substrate, patterning fin structures from the silicon layer and the SiGe layer and filling between the fin structures with a dielectric fill. Trenches are formed to expose end portions of the fin structures. A first region of the fin structures is blocked off. The SiGe layer of the fin structures of a second region is removed by selectively etching the fin structures from the end portions to form voids, which are filled with dielectric material. The silicon layer of the fin structures is exposed. The SiGe layer in the first region is thermally oxidized to drive Ge into the silicon layer to form SiGe fins on an oxide layer in the first region and silicon fins on the dielectric material in the second region.
Abstract:
Methods and structures for forming finFETs of different semiconductor composition and of different conductivity type on a same wafer are described. Some finFET structures may include strained channel regions. FinFETs of a first semiconductor composition may be grown in trenches formed in a second semiconductor composition. Material of the second semiconductor composition may be removed from around some of the fins at first regions of the wafer, and may remain around fins at second regions of the wafer. A chemical component from the second semiconductor composition may be driven into the fins by diffusion at the second regions to form finFETs of a different chemical composition from those of the first regions. The converted fins at the second regions may include strain.
Abstract:
A method of forming a finFET transistor device includes forming a crystalline, compressive strained silicon germanium (cSiGe) layer over a substrate; masking a first region of the cSiGe layer so as to expose a second region of the cSiGe layer; subjecting the exposed second region of the cSiGe layer to an implant process so as to amorphize a bottom portion thereof and transform the cSiGe layer in the second region to a relaxed SiGe (rSiGe) layer; performing an annealing process so as to recrystallize the rSiGe layer; epitaxially growing a tensile strained silicon layer on the rSiGe layer; and patterning fin structures in the tensile strained silicon layer and in the first region of the cSiGe layer.
Abstract:
A method for forming fins includes growing a SiGe layer and a silicon layer over a surface of a bulk Si substrate, patterning fin structures from the silicon layer and the SiGe layer and filling between the fin structures with a dielectric fill. Trenches are formed to expose end portions of the fin structures. A first region of the fin structures is blocked off. The SiGe layer of the fin structures of a second region is removed by selectively etching the fin structures from the end portions to form voids, which are filled with dielectric material. The silicon layer of the fin structures is exposed. The SiGe layer in the first region is thermally oxidized to drive Ge into the silicon layer to form SiGe fins on an oxide layer in the first region and silicon fins on the dielectric material in the second region.
Abstract:
A method of making a structurally stable SiGe-on-insulator FinFET employs a silicon nitride liner to prevent de-stabilizing oxidation at the base of a SiGe fin. The silicon nitride liner blocks access of oxygen to the lower corners of the fin to facilitate fabrication of a high-concentration SiGe fin. The silicon nitride liner is effective as an oxide barrier even if its thickness is less than about 5 nm. Use of the SiN liner provides structural stability for fins that have higher germanium content, in the range of 25-55% germanium concentration.
Abstract:
A method for channel formation in a fin transistor includes removing a dummy gate and dielectric from a dummy gate structure to expose a region of an underlying fin and depositing an amorphous layer including Ge over the region of the underlying fin. The amorphous layer is oxidized to condense out Ge and diffuse the Ge into the region of the underlying fin to form a channel region with Ge in the fin.
Abstract:
A method for channel formation in a fin transistor includes removing a dummy gate and dielectric from a dummy gate structure to expose a region of an underlying fin and depositing an amorphous layer including Ge over the region of the underlying fin. The amorphous layer is oxidized to condense out Ge and diffuse the Ge into the region of the underlying fin to form a channel region with Ge in the fin.
Abstract:
Methods and structures for forming finFETs of different semiconductor composition and of different conductivity type on a same wafer are described. Some finFET structures may include strained channel regions. FinFETs of a first semiconductor composition may be grown in trenches formed in a second semiconductor composition. Material of the second semiconductor composition may be removed from around some of the fins at first regions of the wafer, and may remain around fins at second regions of the wafer. A chemical component from the second semiconductor composition may be driven into the fins by diffusion at the second regions to form finFETs of a different chemical composition from those of the first regions. The converted fins at the second regions may include strain.
Abstract:
A substrate layer formed of a first semiconductor material includes adjacent first and second regions. Fin structures are formed from the substrate layer in both the first and second regions. At least the side walls of the fin structures in the second region are covered with an epitaxially grown layer of second semiconductor material. A drive in process is performed to convert the fin structures in the second region from the first semiconductor material to the second semiconductor material. The first semiconductor material is, for example, silicon, and the second semiconductor material is, for example, silicon germanium or silicon carbide. The fin structures in the first region are provided for a FinFET of a first (for example, n-channel) conductivity type while the fin structures in the second region are provided for a FinFET of a second (for example, p-channel) conductivity type.
Abstract:
A semiconductor device that includes at least one germanium containing fin structure having a length along a direction and a sidewall orientated along the (100) plane. The semiconductor device also includes at least one germanium free fin structure having a length along a direction and a sidewall orientated along the (100) plane. A gate structure is present on a channel region of each of the germanium containing fin structure and the germanium free fin structure. N-type epitaxial semiconductor material having a square geometry present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium free fin structures. P-type epitaxial semiconductor material having a square geometry is present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium containing fin structures.