Abstract:
A method is disclosed for preparing an elastomeric base composition comprising: (I) mixing by an extrusion process (A) a fluorocarbon elastomer with (B) an optional compatibilizer, (C) an optional catalyst (D) a silicone base comprising a curable organopolysiloxane, (E), an optional crosslinking agent (F) a cure agent in an amount sufficient to cure said organopolysiloxane; and (II) dynamically vulcanizing the organopolysiloxane, wherein the weight ratio of fluorocarbon elastomer (A) to silicone base (B) in the elastomeric base composition ranges from 95:5 to 30:70. The cured rubber compositions obtained from the elastomeric base compositions herein have good fuel resistance properties.
Abstract:
A method for preparing a fluoroplastic silicone composition is disclosed containing both a fluoroplastic and a cured organopolysiloxane using dynamic vulcanization techniques. A silicone compound containing a curable organopolysiloxane is first prepared, mixed with a fluoroplastic, and then cured via dynamic vulcanization.
Abstract:
A method for making an organic elastomeric base composition comprising an organic elastomer and silicone, the product prepared by the method, and the cured organic rubber obtained therefrom is disclosed. The method comprises; (I) mixing (A) an organic elastomer with (B) an optional compatibilizer, (C) an optional catalyst, (D) a silicone base comprising a curable organopolysiloxane, (E) an optional crosslinking agent, (F) a cure agent in an amount sufficient to cure said organopolysiloxane; and (II) dynamically vulcanizing the organopolysiloxane, wherein the weight ratio of organic elastomer (A) to silicone base (D) in the elastomeric base composition ranges from 95:5 to 30:70.
Abstract:
A method is disclosed for preparing an elastomeric base composition comprising: (I) mixing (A) a fluorocarbon elastomer with (B) a compatibilizer, (C) an optional catalyst, (II) mixing the product of step (I) with (D) a silicone base comprising a curable organopolysiloxane, (E), an optional crosslinking agent, (F) a cure agent in an amount sufficient to cure said organopolysiloxane; and (III) dynamically vulcanizing the organopolysiloxane, wherein the weight ratio of fluorocarbon elastomer (A) to silicone base (B) in the elastomeric base composition ranges from 95:5 to 30:70. The cured rubber compositions obtained from the elastomeric base compositions herein have good fuel resistance properties.
Abstract:
A method for preparing a thermoplastic elastomer is disclosed, said method comprising (I) mixing (A) a rheologically stable polyamide resin having a melting point or glass transition temperature of 25° C. to 275° C., (B) a silicone base comprising (B′) 100 parts by weight of a diorganopolysiloxane gum having a plasticity of at least 30 and having an average of at least 2 alkenyl groups in its molecule and (B″) 5 to 200 parts by weight of a reinforcing filler, the weight ratio of said silicone base to said polyamide resin is from 35:65 to 85:15, (C) a compatibilizer selected from (i) a coupling agent, (ii) a functional diorganopolysiloxane or (iii) a copolymer comprising at least one diorganopolysiloxane block and at least one block selected from polyamide, polyether, polyurethane, polyurea, polycarbonate or polyacrylate, (D) an organohydrido silicon compound which contains an average of at least 2 silicon-bonded hydrogen groups in its molecule and (E) a hydrosilation catalyst, components (D) and (E) being present in an amount sufficient to cure said diorganopolysiloxane (B′); and (II) dynamically curing said diorganopolysiloxane (B′).
Abstract:
Polyolefin thermoplastic elastomers are disclosed which are prepared by; (I) mixing (A) a thermoplastic resin comprising more than 50 percent by volume of a polyolefin resin, said thermoplastic resin having a softening point of 23° C. to 300° C.; (B) a silicone base comprising (B′) 100 parts by weight of a diorganopolysiloxane gum having a plasticity of at least 30 and having an average of at least 2 alkenyl groups per molecule, and optionally, (B″) up to 200 parts by weight of a reinforcing filler, the weight ratio of said silicone base to said polyolefin thermoplastic resin is from 35:65 to 85:15; (C) a radical initiator, present in an amount sufficient to cure said diorganopolysiloxane gum (B′); and (II) dynamically vulcanizing said diorganopolysiloxane gum, wherein at least one property of the thermoplastic elastomer selected from tensile strength or elongation is at least 25% greater than the respective property for a corresponding simple blend wherein said diorganopolysiloxane gum is not cured and said thermoplastic elastomer has an elongation of at least 25%.
Abstract:
A method for preparing a thermoplastic elastomer is disclosed, said method comprising (I) mixing (A) a rheologically stable polyamide resin having a melting point or glass transition temperature of 25° C. to 275° C., (B) a silicone base comprising (B′) 100 parts by weight of a diorganopolysiloxane gum having a plasticity of at least 30 and having an average of at least 2 alkenyl groups in its molecule and (B″) 5 to 200 parts by weight of a reinforcing filler, the weight ratio of said silicone base to said polyamide resin being greater than 35:65 to 85:15, (C) a compatibilizer selected from (i) a coupling agent, (ii) a functional diorganopolysiloxane or (iii) a copolymer comprising at least one diorganopolysiloxane block and at least one block selected from polyamide, polyether, polyurethane, polyurea, polycarbonate or polyacrylate, (D) an organohydrido silicon compound which contains an average of at least 2 silicon-bonded hydrogen groups in its molecule and (E) a hydrosilation catalyst, components (D) and (E) being present in an amount sufficient to cure said diorganopolysiloxane (B′); and (II) dynamically curing said diorganopolysiloxane (B′).
Abstract:
A method for preparing a thermoplastic elastomer is disclosed, said method comprising (I) mixing (A) a rheologically stable polyamide resin having a melting point or glass transition temperature of 25° C. to 275° C., (B) a silicone base comprising (B′) 100 parts by weight of a diorganopolysiloxane gum having a plasticity of at least 30 and having an average of at least 2 alkenyl radicals in its molecule and (B″) 5 to 200 parts by weight of a reinforcing filler, the weight ratio of said silicone base to said polyamide resin being greater than 35:65 to 85:15, (C) 0.1 to 5 parts by weight of a hindered phenol compound for each 100 parts by weight of said polyamide and said silicone base, (D) an organohydrido silicon compound which contains an average of at least 2 silicon-bonded hydrogen groups in its molecule and (E) a hydrosilation catalyst, components (D) and (E) being present in an amount sufficient to cure said diorganopolysiloxane (B′); and (II) dynamically curing said diorganopolysiloxane (B′), wherein at least one property of the thermoplastic elastomer selected from tensile strength or elongation is at least 25% greater than the respective property for a corresponding simple blend wherein said diorganopolysiloxane is not cured and said thermoplastic elastomer has an elongation of at least 25%.
Abstract:
A thermoplastic composition having a high impact strength is disclosed, said composition being prepared by (I) mixing (A) a thermoplastic selected from a polyester resin or a polyamide resin, (B) a silicone component comprising (B′) a diorganopolysiloxane gum having a plasticity of at least 30 and having an average of at least 2 alkenyl radicals in its molecule and (B″) a fumed silica filler, (C) an organohydrido silicon compound which contains an average of at least 2 silicon-bonded hydrogen groups in its molecule, and (D) a hydrosilation catalyst, components (C) and (D) being present in an amount sufficient to cure said diorganopolysiloxane; and (II) dynamically curing said diorganopolysiloxane gum. When the above composition is based on preferred poly(butylene terephthalate) resins, molded components thereof exhibit an Izod impact strength of at least 14 ft-lb (747 J/m), this high impact strength also being realized by blending the poly(butylene terephthalate) resin with a polycarbonate resin, the fumed silica then being an optional component.