Abstract:
Silicone block copolymers containing polyether-amide units, processes to prepare such silicone block copolymers, and their use in various personal care, cosmetic, household care, and healthcare formulations are disclosed.
Abstract:
Methods for making silicone-organic copolymers are disclosed involving the manipulation of polymerization chain terminators allowing for polymer molecular weight control.
Abstract:
A method for preparing a thermoplastic elastomer is disclosed, said method comprising (I) mixing (A) a rheologically stable polyamide resin having a melting point or glass transition temperature of 25° C. to 275° C., (B) a silicone base comprising (B′) 100 parts by weight of a diorganopolysiloxane gum having a plasticity of at least 30 and having an average of at least 2 alkenyl groups in its molecule and (B″) 5 to 200 parts by weight of a reinforcing filler, the weight ratio of said silicone base to said polyamide resin is from 35:65 to 85:15, (C) a compatibilizer selected from (i) a coupling agent, (ii) a functional diorganopolysiloxane or (iii) a copolymer comprising at least one diorganopolysiloxane block and at least one block selected from polyamide, polyether, polyurethane, polyurea, polycarbonate or polyacrylate, (D) an organohydrido silicon compound which contains an average of at least 2 silicon-bonded hydrogen groups in its molecule and (E) a hydrosilation catalyst, components (D) and (E) being present in an amount sufficient to cure said diorganopolysiloxane (B′); and (II) dynamically curing said diorganopolysiloxane (B′).
Abstract:
A method of making siloxane-based polyamides which includes at least one repeating unit represented by the formula wherein X is a linear or branched C1-C30 alkylene chain; Y is a linear or branched C1-C20 alkylene chain; DP is an integer having a value of 10-500; n is an integer having a value 1-500. The method involves heating an intimate reaction mixture containing an olefinic acid and an organic diamine at a temperature greater than 100° C. and forming an organic diamide; and thereafter reacting the organic diamide with a hydride-terminated polydimethylsiloxane in the presence of a hydrosilylation catalyst to form the siloxane-based polyamide.
Abstract:
A method for preparing a thermoplastic elastomer is disclosed, said method comprising (I) mixing (A) a rheologically stable polyamide resin having a melting point or glass transition temperature of 25° C. to 275° C., (B) a silicone base comprising (B′) 100 parts by weight of a diorganopolysiloxane gum having a plasticity of at least 30 and having an average of at least 2 alkenyl groups in its molecule and (B″) 5 to 200 parts by weight of a reinforcing filler, the weight ratio of said silicone base to said polyamide resin being greater than 35:65 to 85:15, (C) a compatibilizer selected from (i) a coupling agent, (ii) a functional diorganopolysiloxane or (iii) a copolymer comprising at least one diorganopolysiloxane block and at least one block selected from polyamide, polyether, polyurethane, polyurea, polycarbonate or polyacrylate, (D) an organohydrido silicon compound which contains an average of at least 2 silicon-bonded hydrogen groups in its molecule and (E) a hydrosilation catalyst, components (D) and (E) being present in an amount sufficient to cure said diorganopolysiloxane (B′); and (II) dynamically curing said diorganopolysiloxane (B′).
Abstract:
An invention is disclosed which comprises siloxane-based polyamides as gelling agents for cosmetic products, methods for making such agents, formulations thereof and cosmetic formulations therewith. These polyamides contain siloxane groups in the main chain and act to thicken compositions containing volatile and/or non-volatile silicone fluids. Cosmetic compositions may be made by adding at least one active ingredient such as an antiperspirant
Abstract:
The present invention relates to a method of making a silicone polyether comprising (I) reacting a mixture comprising an olefin functional polyether, an organohydrogensiloxane, and a homogeneous transition metal hydrosilylation catalyst, and (II) subjecting the product of (I) to hydrogen gas. The method of this invention reduces the amount of olefinic species present which are precursors to odorous compounds. Thus the method of this invention reduces the amount of odor in the silicone polyether product. These odors are objectionable, particularly in personal care applications.
Abstract:
An invention is disclosed which comprises siloxane-based polyamides as gelling agents for cosmetic products, methods for making such agents, formulations therof and cosmetic formulations therewith. These polyamides contain siloxane groups in the main chain and act to thicken compositions containing volatile and/or non-volatile silicone fluids. Cosmetic compositions may be made by adding at least one active ingredient such as an antiperspirant.
Abstract:
A phase change composition comprises: a matrix comprising an organofunctional silicone wax, and a thermally conductive filler. The composition can be used as a thermal interface material in electronic devices. The composition is formulated to have any desired phase change temperature.
Abstract:
A lithography method includes the steps of: A) filling a mold having a patterned surface with a phase change composition at a temperature above the phase change temperature of the phase change composition; B) hardening the phase change composition to form a patterned feature; C) separating the mold and the patterned feature; optionally D) etching the patterned feature; optionally E) cleaning the mold; and optionally F) repeating steps A) to D) reusing the mold. The PCC may include an organofunctional silicone wax.