Abstract:
A method includes providing a substrate having a main surface, forming a layer of thermally insulating material on the main surface, forming strips of phase change material on the layer of thermally insulating material such that strips of phase change material are separated from the main surface by thermally insulating material, forming first and second RF terminals on the main surface that are laterally spaced apart from one another and connected to the strips of phase change material, and forming a heater structure having heating elements that are configured to control a conductive connection between the first and second RF terminals by applying heat to the one or more strips of phase change material, wherein each of the strips of phase change material includes multiple outer faces, and wherein portions of both outer faces from the strips of phase change material are disposed against one of the heating elements.
Abstract:
A phase change material switch device is provided. In one implementation, the phase change material switch device includes a phase change material and a heater device thermally coupled to the phase change material. During heating phases, a coupling device provides a first electrical impedance between a power source and the heater device. Outside the heating phases, the coupling device provides a second, higher, impedance.
Abstract:
In an embodiment, a phase change switch device is provided. The phase change switch includes a phase change material, a set of heaters arranged to heat the phase change material and a power source. A switch arrangement including a plurality of switches is provided, which is configured to selectively provide electrical power from the power source to the set of the heaters.
Abstract:
A high-frequency switching circuit includes a high-frequency switching transistor, wherein a high-frequency signal-path extends via a channel-path of the high-frequency switching transistor. The high-frequency switching circuit includes a control circuit and the control circuit is configured to apply at least two different bias potentials to a substrate of the high-frequency switching transistor, depending on a control signal received by the control circuit.
Abstract:
An RF switch circuit for switching RF signals includes a first terminal and a second terminal and a series connection of a plurality of transistors between the first terminal of the RF switch circuit and the second terminal of the RF switch circuit. Furthermore, the RF switch circuit includes a control circuit configured to conductively couple, in a high impedance state of the RF switch circuit, the first terminal of the RF switch circuit to a control terminal of a first transistor in a series of the series connection of the plurality of transistors. The second terminal of the RF switch circuit is conductively coupled to a control terminal of a last transistor in the series of the series connection of the plurality of transistors.
Abstract:
A three-dimensional integrated circuit includes a first integrated circuit having a first transistor and a first buried oxide layer; a second integrated circuit having a second transistor and a second buried oxide layer; a bond interface between an upper surface of the first integrated circuit and an upper surface of the second integrated circuit; a passivation layer coupled to the first buried oxide layer; and a mold wafer coupled to the second buried oxide layer.
Abstract:
In an embodiment, a phase change switch device is provided. The phase change switch includes a phase change material, a set of heaters arranged to heat the phase change material, and a switch arrangement. The switch arrangement includes a plurality of switches, and is configured to selectively provide electrical power to the set of the heaters.
Abstract:
A switch device includes a phase change switch and a memory for storing a target state of the phase change switch. A controller determines a phase state of the phase change switch, and, if the state of the phase change switch does not correspond to the target state, controls a heater of the phase change switch to change the state of the phase changes switch to the target state.
Abstract:
A method includes providing a substrate having a main surface, forming a layer of thermally insulating material on the main surface, forming strips of phase change material on the layer of thermally insulating material such that strips of phase change material are separated from the main surface by thermally insulating material, forming first and second RF terminals on the main surface that are laterally spaced apart from one another and connected to the strips of phase change material, and forming a heater structure having heating elements that are configured to control a conductive connection between the first and second RF terminals by applying heat to the one or more strips of phase change material, wherein each of the strips of phase change material includes multiple outer faces, and wherein portions of both outer faces from the strips of phase change material are disposed against one of the heating elements.
Abstract:
In an embodiment, a phase change switch device is provided. The phase change switch includes a phase change material, a set of heaters arranged to heat the phase change material and a power source. A switch arrangement including a plurality of switches is provided, which is configured to selectively provide electrical power from the power source to the set of the heaters.