Abstract:
Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
Abstract:
An apparatus comprises a continuously flexible device and an actuation mechanism that acts to bend and straighten the continuously flexible device. The apparatus also includes a sensor apparatus that generates bend information about at least a portion of the continuously flexible device. The apparatus also includes an electronic data processor. The electronic data processor generates (i) external force information about at least one of a magnitude or a direction of an external force applied to the continuously flexible device, or (ii) both the external force information and internal force information about a bending force applied to the continuously flexible device by the actuation mechanism from (a) the generated bend information and (b) information representing at least one mechanical property of the continuously flexible device.
Abstract:
In a coupled control mode, the surgeon directly controls movement of an associated slave manipulator with an input device while indirectly controlling movement of one or more non-associated slave manipulators, in response to commanded motion of the directly controlled slave manipulator, to achieve a secondary objective. By automatically performing secondary tasks through coupled control modes, the system's usability is enhanced by reducing the surgeon's need to switch to another direct mode to manually achieve the desired secondary objective. Thus, coupled control modes allow the surgeon to better focus on performing medical procedures and to pay less attention to managing the system.
Abstract:
Collisions between a minimally invasive surgical instrument and patient tissue are prevented in various ways. In one aspect, a body cavity is mapped by recording positions of a surgical instrument, and the map is used to insert another surgical instrument. In another aspect, a surgical instrument is inserted into a space vacated by a guide tube. In yet another aspect, a volume is defined in which a control system permits an instrument to move, and the volume is a sum of one volume that is defined by previous movements of the instrument and other volume that is defined by the boundaries of an image capture component. In yet another aspect, a real time image of a surgical site is mosaiced over a previously recorded more distal image of the site. Surgical instruments are visible in the real time image, and representations of the surgical instruments as they would appear in the previously recorded image are generated and displayed on the previously recorded image. Consequently, a person moving the surgical instruments sees a representation of the instruments outside the field of view of an imaging system taking the real time images.
Abstract:
A robotic control system is placed in clutch mode so that a slave manipulator holding a surgical instrument is temporarily disengaged from control by a master manipulator in order to allow manual positioning of the surgical instrument at a surgical site within a patient. Control systems implemented in a processor compensate for internally generated frictional and inertial resistance experienced during the positioning, thereby making movement more comfortable to the mover, and stabler from a control standpoint. Each control system drives a joint motor in the slave manipulator with a saturated torque command signal which has been generated to compensate for non-linear viscous forces, coulomb friction, cogging effects, and inertia forces subjected to the joint, using estimated joint angular velocities, accelerations and externally applied torques generated by an observer in the control system from sampled displacement measurements received from a sensor associated with the joint.
Abstract:
Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
Abstract:
In a coupled control mode, the surgeon directly controls movement of an associated slave manipulator with an input device while indirectly controlling movement of one or more non-associated slave manipulators, in response to commanded motion of the directly controlled slave manipulator, to achieve a secondary objective. By automatically performing secondary tasks through coupled control modes, the system's usability is enhanced by reducing the surgeon's need to switch to another direct mode to manually achieve the desired secondary objective. Thus, coupled control modes allow the surgeon to better focus on performing medical procedures and to pay less attention to managing the system.
Abstract:
A robotic control system is placed in clutch mode so that a slave manipulator holding a surgical instrument is temporarily disengaged from control by a master manipulator in order to allow manual positioning of the surgical instrument at a surgical site within a patient. Control systems implemented in a processor compensate for internally generated frictional and inertial resistance experienced during the positioning, thereby making movement more comfortable to the mover, and stabler from a control standpoint. Each control system drives a joint motor in the slave manipulator with a saturated torque command signal which has been generated to compensate for non-linear viscous forces, coulomb friction, cogging effects, and inertia forces subjected to the joint, using estimated joint angular velocities, accelerations and externally applied torques generated by an observer in the control system from sampled displacement measurements received from a sensor associated with the joint.
Abstract:
In a coupled control mode, the surgeon directly controls movement of an associated slave manipulator with an input device while indirectly controlling movement of one or more non-associated slave manipulators, in response to commanded motion of the directly controlled slave manipulator, to achieve a secondary objective. By automatically performing secondary tasks through coupled control modes, the system's usability is enhanced by reducing the surgeon's need to switch to another direct mode to manually achieve the desired secondary objective. Thus, coupled control modes allow the surgeon to better focus on performing medical procedures and to pay less attention to managing the system.
Abstract:
An apparatus, system, and method for improving force and torque sensing and feedback to the surgeon performing a telerobotic surgery are provided. In one embodiment, a surgical instrument, a robotic surgical system, a cannula, a cannula seal, and a method for improved sensing of z-axis forces on a robotic surgical instrument are disclosed.