Abstract:
A microelectromechanical (MEMS) sensor has a capacitance that varies based on a sensed force. A charge signal representing that capacitance is provide at an input node of an amplifier of a sense circuit. The sense circuit includes a filter and analog-to-digital converter. Feedback from the filter and the analog-to-digital converter is also received at the input node of the amplifier. The sense circuit outputs a digital signal that is representative of the sensed force.
Abstract:
Providing security features in an audio sensor is presented herein. A micro-electro-mechanical system (MEMS) microphone can include an acoustic membrane that converts an acoustic signal into an electrical signal; an electronic amplifier that increases an amplitude of the electrical signal to generate an amplified signal; and switch(es) configured to prevent propagation of a direct current (DC) voltage source to the MEMS microphone; prevent propagation of the DC voltage source to the electronic amplifier; prevent propagation of the electrical signal to the electronic amplifier; and/or prevent propagation of the amplified signal to an external device.
Abstract:
Systems and techniques for detecting blockage associated with a microelectromechanical systems (MEMS) microphone of a device are presented. The device includes a MEMS acoustic sensor and a processor. The MEMS acoustic sensor is contained in a cavity within the device. The processor is configured to detect a blockage condition associated with an opening of the cavity that contains the MEMS acoustic sensor.
Abstract:
A programmable acoustic sensor is disclosed. The programmable acoustic sensor includes a MEMS transducer and a programmable circuitry coupled to the MEMS transducer. The programmable circuitry includes a power pin and a ground pin. The programmable acoustic sensor also includes a communication channel enabling data exchange between the programmable circuitry and a host system. One of the power pin and the ground pin can be utilized for data exchange.
Abstract:
A microelectromechanical systems (MEMS) sensor with an integrated power management system that performs analog to digital conversion of weak signals is provided. The MEMs sensor can include a switching regulator that steps a supply voltage down to a voltage appropriate for an analog to digital converter (A/D converter). A timing circuit is provided to generate a clock frequency for the switching regulator and the A/D converter such that the clock frequencies are harmonically related. The frequency of the voltage ripples formed by the switching regulator will match the clock frequency provided to the switching regulator. When the sampling frequency of the A/D converter is harmonically related to the voltage ripple frequencies, the aliasing frequency will fall outside a range of frequencies associated with the analog signal.
Abstract:
Sensor fusion for antenna tuning for wireless devices is provided to enhance antenna tuning and reduce power consumption of wireless devices. A sensor management component (SMC) obtains sensor information from sensors associated with a wireless device and determines position and/or orientation of the wireless device in relation to the user, and/or tracks movement of the wireless device. The SMC communicates sensor-based information relating to the position, orientation, and/or movement associated with the wireless device to a tuner management component (TMC) associated with a tuner component and a set of antennas. The TMC determines electrical measurements of the signal from the set of antennas, and determines a tuning setting for the set of antennas based on the sensor-based information and/or the electrical measurements. The TMC provides control information to the tuner component to adjust the tuning of the set of antennas based on the tuning setting.
Abstract:
Microelectromechanical systems (MEMS) acoustic sensors with dedicated preamplifiers are described. Provided implementations can comprise an array of MEMS acoustic sensor elements each having a dedicated preamplifier. A summation node can add outputs of each preamplifier and an analog to digital converter (ADC) can receive the summed outputs. Other implementations can comprise an array of MEMS acoustic sensors each having dedicated preamplifiers. Some of the preamplifiers receive an invert signal and an ADC can subtract inverted signals from non-inverted signals.
Abstract:
Microelectromechanical systems (MEMS) acoustic sensor-based gesture recognition associated with detecting gestures is described. Provided implementations can comprise MEMS acoustic sensor elements that receive signals reflected off an object. A time sequence associated with each of the MEMS acoustic sensor elements detecting proximity of the object is determined. A gesture is identified based on the time sequence. Functions of a device are controlled according to the gesture.
Abstract:
Detection of audible and ultrasonic signals is provided by a microelectromechanical microphone. The detection range of ultrasonic signals can be configurable. In certain embodiments, the microelectromechanical microphone can include a band-pass sigma-delta modulator that can generate a digital signal representative of an ultrasonic signal. In addition or in other embodiments, the microelectromechanical microphone can include an event detector device that can determine that an ultrasonic event has occurred and, in response, can send a control signal to an external device. Detection of ultrasonic signals can be utilized in vehicular applications and/or gesture recognition.
Abstract:
Providing security features in an audio sensor is presented herein. A micro-electro-mechanical system (MEMS) microphone can include an acoustic membrane that converts an acoustic signal into an electrical signal; an electronic amplifier that increases an amplitude of the electrical signal to generate an amplified signal; and switch(es) configured to prevent propagation of a direct current (DC) voltage source to the MEMS microphone; prevent propagation of the DC voltage source to the electronic amplifier; prevent propagation of the electrical signal to the electronic amplifier; and/or prevent propagation of the amplified signal to an external device.