摘要:
Disclosed is a method to provide a new deep trench collar process which reduces encroachment of strap diffusion upon array metal oxide semiconductor field effect transistors (MOSFET's) in semiconductor devices. The invention allows a reduced effective deep trench edge bias at the top of the deep trench, without compromising storage capacitance, by maximizing the distance between the MOSFET gate conductor and the deep trench storage capacitor.
摘要:
A method of forming a vertical transistor. A pad layer is formed over a semiconductor substrate. A trough is formed through the pad layer and in the semiconductor substrate. A bit line is formed buried in the trough. The bit line is enclosed by a dielectric material. A strap is formed extending through the dielectric material to connect the bit line to the semiconductor substrate. The trough is filled above the bit line with a conductor. The conductor is cut along its longitudinal axis such that the conductor remains on one side of the trough. Wordline troughs are formed, substantially orthogonal to the bit line, above the semiconductor substrate. A portion of the conductor is removed under the wordline trough to separate the conductor into separate gate conductors. Wordlines are formed in the wordline trough connected to the separate gate conductors.
摘要:
A method for forming an isolation trench region in a semiconductor substrate includes providing the trench region in the semiconductor substrate, adding spacer material at least to sidewalls of the trench region, and etching the trench region at a bottom surface thereof to extend the trench region below the bottom surface and form a crevice region. The spacer material may be subsequently heated such that the spacer material flows from the sidewalls and into the crevice region.
摘要:
A memory cell containing double-gated vertical metal oxide semiconductor field effect transistors (MOSFETs) and isolation regions such as shallow trench isolation, STI, regions that are self-aligned to the wordlines and bitlines of the cell are provided. The inventive memory cell substantially eliminates the backgating problem and floating well effects that are typically present in prior art memory cells. A method of fabricating the inventive memory cell is also provided.
摘要:
A memory cell containing double-gated vertical metal oxide semiconductor field effect transistors (MOSFETs) and isolation regions such as shallow trench isolation, STI, regions that are self-aligned to the wordlines and bitlines of the cell are provided. The inventive memory cell substantially eliminates the backgating problem and floating well effects that are typically present in prior art memory cells. A method of fabricating the inventive memory cell is also provided.
摘要:
A DRAM cell storage capacitor is formed above the bottom of a deep trench (DT) below an FET transistor. The DT has upper, central and lower portions with sidewalls. A capacitor plate electrode, surrounding the lower DT portion that is doped with a first dopant type, is separated by an interface from a well region surrounding the upper and central portions of the DT that are doped with an opposite dopant type. A source/drain region formed at the top of the cell is doped with the first dopant type. A node dielectric layer that covers the sidewalls and bottom of the lower and central portions of the DT is filled with a node electrode of the capacitor, doped with the first dopant type, fills the space inside the node dielectric layer in the lower part of the DT. Above a recessed node dielectric layer a strap region space is filled with a buried-strap conductor. An oxide (TTO) layer is formed over the node electrode and the buried-strap in the DT. A peripheral gate oxide layer, which coats sidewalls of the DT above the TTO, defines a space which is filled with the FET gate electrode. An outdiffusion region, doped with the first dopant type, is formed in the well region near the buried-strap. The cell has a first state and an opposite state of operation. A punch-through device, formed in the well between the outdiffusion region and the interface, provides a self-refreshing punchthrough current in the cell between the well and the plate in the first state of cell operation. A reverse bias junction leakage current occurs in the cell between the buried-strap and the P-well to refresh the opposite state of cell operation.
摘要:
A process of forming a hybrid memory cell which is scalable to a minimum feature size, F, of about 60 nm at an operating voltage of Vblh of about 1.5 V and substantially free of floating-well effects is provided.
摘要:
A method of fabricating a vertical field effect transistor (“FET”) is provided which includes a transistor body region and source and drain regions disposed in a single-crystal semiconductor-on-insulator (“SOI”) region of a substrate adjacent a sidewall of a trench. The substrate includes a buried insulator layer underlying the SOI region and a bulk region underlying the buried insulator layer. A buried strap conductively connects the SOI region to a lower node disposed below the SOI region and a body contact extends from the transistor body region to the bulk region of the substrate, the body contact being insulated from the buried strap.
摘要:
Structures including a self-aligned strap for embedded trench memory (e.g., trench capacitor) on hybrid orientation technology (HOT) substrate, and related method, are disclosed. One structure includes a hybrid orientation substrate including a semiconductor-on-insulator (SOI) section and a bulk semiconductor section; a transistor over the SOI section; a trench capacitor in the bulk semiconductor section; and a self-aligned strap extending from a source/drain region of the transistor to an electrode of the trench capacitor. The method does not require additional masks to generate the strap, results in a self-aligned strap and improved device performance. In one embodiment, the strap is a silicide strap.
摘要:
A method of forming a memory cell having a trench capacitor and a vertical transistor in a semiconductor substrate includes a step of providing a bonded semiconductor wafer having a lower substrate with an [010] axis parallel to a first wafer axis and an upper semiconductor layer having an [010] axis oriented at forty-five degrees with respect to the wafer axis, the two being connected by a layer of bonding insulator; etching a trench through the upper layer and lower substrate; enlarging the lower portion of the trench and converting the cross section of the upper portion of the trench from octagonal to rectangular, so that sensitivity to alignment errors between the trench lithography and the active area lithography is reduced. An alternative version employs a bonded semiconductor wafer having a lower substrate formed from a (111) crystal structure and the same upper portion. Applications include a vertical transistor that becomes insensitive to misalignment between the trench and the lithographic pattern for the active area, in particular a DRAM cell with a vertical transistor.