摘要:
Using the ALTO Service, networking applications can request through the ALTO protocol information about the underlying network topology from the ISP or Content Provider. The ALTO Service provides information such as preferences of network resources with the goal of modifying network resource consumption patterns while maintaining or improving application performance. This document describes, in one example, an ALTO server that implements enhancements to the ALTO service to enable initiating incremental updates of network and cost maps to ALTO clients upon receiving status information from a content delivery network (CDN) node.
摘要:
In general, techniques are described for distributing traffic engineering (TE) link information across network routing protocol domain boundaries using a routing protocol. In one example, a network device logically located within a first routing protocol domain includes a routing protocol module executing on a control unit to execute an exterior gateway routing protocol. The routing protocol module of the network device receives an exterior gateway routing protocol advertisement from a router logically located within a second routing protocol domain and decodes traffic engineering information for a traffic engineering link from the exterior gateway routing protocol advertisement. A path computation module of the network device computes a traffic engineered path by selecting the traffic engineering link for inclusion in the traffic engineered path based on the traffic engineering information.
摘要:
Using the ALTO Service, networking applications can request through the ALTO protocol information about the underlying network topology from the ISP or Content Provider. The ALTO Service provides information such as preferences of network resources with the goal of modifying network resource consumption patterns while maintaining or improving application performance. This document describes, in one example, an ALTO server that intersects network and cost maps for a first network with network and cost maps for a second network to generate a master cost map that includes one or more master cost entries that each represent a cost to traverse a network from an endpoint in the first network to an endpoint in the second network. Using the master cost map, a redirector may select a preferred node in the first network with which to service a content request received from a host in the second network.
摘要:
A session border controller includes a first port to communicate with a user using a first signaling protocol, a second port to communicate with a content provider using a second signaling protocol, and a processor coupled to the first and second ports. The session border controller may send a PLAY message to the content provider to begin delivery of a content destined for the user. The session border controller may further receive a first media stream including the content and content provider information from the content provider. The session border controller may further create a second media stream that includes the content without the content provider information, and deliver the second media stream to the user.
摘要:
In one example, a system includes a first computing device configured to execute a virtual machine, wherein the virtual machine is communicatively coupled to a virtual private network (VPN) via a first attachment circuit using a first set of network parameters, stop execution of the virtual machine, and create checkpoint data for the virtual machine, and a second computing device configured to execute the virtual machine, using at least some of the checkpoint data, and to cause the virtual machine to become communicatively coupled to the VPN via a second attachment circuit using a second set of network parameters different from the first set of network parameters. The system may further include a first provider edge (PE) routing device communicatively coupled to the first computing device via the first attachment circuit, and a second PE routing device communicatively coupled to the second computing device via the second attachment circuit.
摘要:
In general, techniques are described for dynamically generating attributes from routing topology information and assigning dynamically generated attributes to network map entries to further characterize PIDs described therein. For example, a provider or other entity assigns, within a network device, endpoint types to one or more address prefixes for which the network device originates or forwards route advertisements. For each typed prefix, the network device adds an endpoint type identifier for the assigned endpoint type to route advertisements that traverse or originate with the network device and specify the prefix. An ALTO server peers with router advertisers to receive route advertisements. When the ALTO server receives a route advertisement that includes an endpoint type identifier, the ALTO server maps the endpoint type identifier to a PID attribute and assigns the PID attribute to a PID that includes a prefix identified in the route advertisement.
摘要:
In general, techniques are described for advertising end user content delivery reachability by content delivery networks (CDNs) to upstream content serving entities. In one example, a CDN interconnection (CDNI) device of a content serving entity receives a prefix advertisement that specifies a downstream entity and indicates the downstream entity provides content delivery reachability to the network address prefix. A request router of the CDNI device receives a content request that includes a request for content and specifies a network address of an end user device to receive the content, wherein the network address is within a range defined by the network address prefix. The request router selects the downstream entity to serve the content request based at least on the content delivery reachability indication and redirects the content request to the downstream entity.
摘要:
In general, techniques are described for dynamically scheduling and establishing paths in a multi-layer, multi-topology network to provide dynamic network resource allocation and support packet flow steering along paths prescribed at any layer or combination of layers of the network. In one example, a multi-topology path computation element (PCE) accepts requests from client applications for dedicated paths. The PCE receives topology information from network devices and attempts to identify paths through a layer or combination of layers of the network that can be established at the requested time in view of the specifications requested for the dedicated paths and the anticipated bandwidth/capacity available in the network. The PCE schedules the identified paths through the one or more layers of the network to carry traffic for the requested paths. At the scheduled times, the PCE programs path forwarding information into network nodes to establish the scheduled paths.
摘要:
In general, techniques are described for dynamically scheduling and establishing paths in a multi-layer, multi-topology network to provide dynamic network resource allocation and support packet flow steering along paths prescribed at any layer or combination of layers of the network. In one example, a multi-topology path computation element (PCE) accepts requests from client applications for dedicated paths. The PCE receives topology information from network devices and attempts to identify paths through a layer or combination of layers of the network that can be established at the requested time in view of the specifications requested for the dedicated paths and the anticipated bandwidth/capacity available in the network. The PCE schedules the identified paths through the one or more layers of the network to carry traffic for the requested paths. At the scheduled times, the PCE programs path forwarding information into network nodes to establish the scheduled paths.
摘要:
In general, techniques are described for using routing information obtained by operation of network routing protocols to dynamically generate network and cost maps for an application-layer traffic optimization (ALTO) service. For example, an ALTO server of an autonomous system (AS) receives routing information from routers of the AS by listening for routing protocol updates outputted by the routers and uses the received topology information to dynamically generate a network map of PIDs that reflects a current topology of the AS and/or of the broader network that includes the AS. Additionally, the ALTO server dynamically calculates inter-PID costs using received routing information that reflects current link metrics. The ALTO server then assembles the inter-PID costs into a cost map that the ALTO server may provide, along with the network map, to clients of the ALTO service.