Abstract:
The invention relates to a polychrome screen comprising alternating regions (40A, 40B) of a first (A) and a second (B) dichroic display materials placed between first and second insulating walls (31, 33) and alternating regions (42B, 42C) of a second (B) and a third (C) dichroic display materials placed between the second and third insulating walls (33, 35); each region of the first material of the first layer being superimposed both on a region of the second material of the second layer and part of a region of the third material of the second layer and each region of the second material of the first layer is superimposed on the other part of the region of the third material of the second layer. The present invention more particularly applies to polychrome display cells with liquid crystals, such as those of the nematic or ferroelectric type, using both a multiplexed and non-multiplexed display mode.
Abstract:
Liquid crystal cell using the electrically controlled birefringence effect and processes for the production of the cell and a uniaxial medium or material of negative optical anistropy usable therein.The cell can comprise two crossed rectilinear polarizers, two glass plates provided with transparent electrodes and placed between said polarizers, a liquid crystal layer between the plates and, between a plate and a polarizer, a layer of a negative uniaxial thermoplastic polymer having its extraordinary axis perpendicular to the plates. This layer can be obtained by heating the polymer up to the isotropic state, under a uniform presure on the polarizers, cooling and eliminating the pressure. Application to the production of data display devices.
Abstract:
Provided is a microfluidic device comprising a microfluidic substrate comprising at least one pathway for sample flow; and at least one thermal transfer member which is capable of cycling between at least two temperatures. The thermal transfer member is adapted to heat at least a portion of the sample pathway while a sample is flowing along said at least a portion of said sample pathway. Provided also are methods of carrying out biochemical protocols using such a device.
Abstract:
An electron collector having an anode constituted by a substrate (21, 40, 41) on which are deposited conductive strips or tracks (23, 43). A dielectric material layer is deposited on at least one of the edges of each conductive strip.
Abstract:
A flat display screen has a cathode including microtips for electronic bombardment associated with a gate, an anode including phosphor elements, and an inter-electrode gap. The screen includes an apertured insulating plate defining the inter-electrode gap associated with means for maintaining the plate apart from the anode.
Abstract:
A dot matrix liquid crystal display having segment electrodes and common electrodes, a segment driver circuit and a common driver circuit, a multi-level power source, sensor resistors connected in series to the supply voltage bus lines for the segment electrodes, amplifiers for detecting and ampifying the voltage drop in the sensor resistors, and capacitors for capacitively coupling the common electrodes and the amplifiers. When the segment voltage is changed, the voltage change is sensed through the sensor resister and is fed back to the common electrode to reduce the induced noise on the common electrode.
Abstract:
A dot matrix type liquid crystal display device having two groups of mutually crossing parallel electrodes sandwiching a liquid crystal layer, the electrodes of one group having an aperture at each electrode crossing area along the direction of and centrally at the electrode of the other group. The electric field at the aperture portion is constantly slanted to a predetermined direction to present uniform and wide stable display areas.
Abstract:
A planar light source, comprises a vacuum enclosure (1) bounded by two parallel, insulating planar walls (3,4) and a side wall (2). On each of the planar walls and within the enclosure (1) is placed a conductive electrode (5,6) covered with an insulating layer (7,8) and at least one of these two wall-electrode-insulating layer assemblies is transparent. On one of the insulating layers (8) is placed a cathodoluminescent material layer (9). In the vicinity of the side wall (2) and externally of the two conductive electrodes (5,6) is provided an electron source (11) and a voltage source (10) is also provided for alternatively applying to the two conductive electrodes (5,6) two different potentials (V.sub.anode, V.sub.rest), so that the electrons emitted by the electron source are alternatively collected by the electrodes.
Abstract:
Method for controlling a matrix display screen enabling its contrast to be adjusted as regards a liquid crystals screen and its luminosity as regards a fluorescent micropoints screen, said method consisting of periodically applying line conductors addressing signals V1 having for a certain period a value Vmax into an absolute value to be applied to column conductors of control signals. Addressing signals are applied to the line conductors, the durations of said signals having a value Vmax and are partially recovered for two consecutive lines.
Abstract:
Active matrix screen for the color display of television images or pictures, control system and process for the production of the screen.The screen utilizes the electrically controlled birefringence effect and comprises an assembly having a nematic liquid crystal layer (2) with a positive optical anisotropy between an active matrix having transparent control electrodes (8) and a transparent counterelectrode (10) equipped with colored filters (13) and two polarizing means (12,14), which are complimentary of one another and are located on either side of the assembly. The optical path in the layer is at the most equal to approximately 0.6 micrometer. The system comprises means for amplifying the blue, green and red video signals, whereof the respective gains are regulated so as to be able to display a neutral white shade. According to the process, it is possible to produce between one of the polarizing means and the assembly, a birefringence compensating layer (16) essentially corresponding to the same optical path as the liquid crystal layer. (FIG. 1).