Abstract:
Methods are provided for forming semiconductor devices. One method includes forming a first layer overlying a bulk semiconductor substrate. A second layer is formed overlying the first layer. A plurality of trenches is etched into the first and second layers. Portions of the second layer that are disposed between the plurality of trenches define a plurality of fins. A gate structure is formed overlying the plurality of fins. The first layer is etched to form gap spaces between the bulk semiconductor substrate and the plurality of fins. The plurality of fins is at least partially supported in position adjacent to the gap spaces by the gate structure. The gap spaces are filled with an insulating material.
Abstract:
Fabrication methods for semiconductor device structures are provided. One method for fabricating a semiconductor device structure involves forming a first layer of a first dielectric material overlying a doped region formed in a semiconductor substrate, forming a first conductive contact electrically connected to the doped region within the first layer, forming a dielectric cap on the first conductive contact, forming a second layer of a second dielectric material overlying the dielectric cap and a gate structure overlying the semiconductor substrate, and forming a second conductive contact electrically connected to the gate structure within the second layer.
Abstract:
Methods are provided for fabricating FinFETs that avoid thickness uniformity problems across a die or a substrate. One method includes providing a semiconductor substrate divided into a plurality of chips, each chip bounded by scribe lines. The substrate is etched to form a plurality of fins, each of the fins extending uniformly across the width of the chips. An oxide is deposited to fill between the fins and is etched to recess the top of the oxide below the top of the fins. An isolation hard mask is deposited and patterned overlying the plurality of fins and is used as an etch mask to etch trenches in the substrate defining a plurality of active areas, each of the plurality of active areas including at least a portion of at least one of the fins. The trenches are filled with an insulating material to isolate between adjacent active areas.
Abstract:
A tunneling field effect transistor (TFET) device includes a semiconductor substrate having a layer of relatively intermediate bandgap semiconductor material, a layer of relatively low bandgap semiconductor material overlying the layer of relatively intermediate bandgap semiconductor material, and a layer of relatively high bandgap semiconductor material overlying the layer of relatively low bandgap semiconductor material. The TFET device includes a source region, a drain region, and a channel region defined in the semiconductor substrate. The TFET device also has a gate structure overlying at least a portion of the channel region. The source region is highly doped with an impurity dopant having a first conductivity type, and the drain region is highly doped with an impurity dopant having a second conductivity type. The layer of relatively low bandgap semiconductor material promotes tunneling at a first junction between the source region and the channel region, and the layer of relatively high bandgap semiconductor material inhibits tunneling at a second junction between the source region and the channel region.
Abstract:
A method of manufacturing semiconductor fins for a semiconductor device may begin by providing a bulk semiconductor substrate. The method continues by growing a layer of first epitaxial semiconductor material on the bulk semiconductor substrate, and by growing a layer of second epitaxial semiconductor material on the layer of first epitaxial semiconductor material. The method then creates a fin pattern mask on the layer of second epitaxial semiconductor material. The fin pattern mask has features corresponding to a plurality of fins. Next, the method anisotropically etches the layer of second epitaxial semiconductor material, using the fin pattern mask as an etch mask, and using the layer of first epitaxial semiconductor material as an etch stop layer. This etching step results in a plurality of fins formed from the layer of second epitaxial semiconductor material.
Abstract:
Disclosed are novel compounds that can be used as an energetic binder used for improving the performance and the properties of a high explosive, and a preparation method thereof. More specifically, provided are glycidyl dinitropropyl formal of chemical formula IV having a nitro group (—NO2) as an energy group and having no hydrogen bonding to carbon to which the nitro group is binding, poly(glycidyl dinitropropyl formal) of chemical formula V polymerized using the glycidyl dinitropropyl formal as a monomer, and a preparation method thereof.
Abstract:
Disclosed are a membrane coupled activated sludge method and apparatus operating anoxic/anaerobic processes alternately for removal of nitrogen and phosporus, wherein nitrogen and phosphorous together with organics in the sewage, wastewater, filthy water etc. can be simultaneously removed with an economic and efficient manner, an operation thereof is easy and efficient, a capacity thereof is high and the method is economic due to the reduced operating costs with performing measurement and control of a recycle rate, a recycle time of alternate operation of the anoxic and anaerobic process, an amount of sludge, an amount of aeration and an operation of a blower for an intermittent membrane cleaning.
Abstract:
A disk drive assembly including a disk drive, a bracket for containing the disk drive, and a damper for absorbing an impact transmitted to the disk drive. The damper may have a shape of a ring to encircle a corner of the disk drive and may be formed of an elastic material to buffer an impact transmitted between the disk drive and the bracket. Particularly, since the width and/or diameter of the damper may be formed with a minimized size, the damper is capable of providing sufficient buffering properties. In addition, the space occupied by the damper may further be minimized. Thus, since the space occupied by the disk drive assembly may be reduced, it is possible to favorably apply the assembly to a portable electronic device.
Abstract:
A circuit for detecting the amount of radio frequency power provided by an amplifier. The circuit contains an array of coupled transistors in two power amplifiers, and a log-detector circuit, all resident on a single semiconductor die. The main power amplifier contains the larger array of transistors to amplify the radio frequency signal for feeding to an antenna, and a secondary power amplifier contains a smaller array of transistors to provide a scaled output that is proportional to the amplified radio frequency signal and is used to control the main power amplifier. The log-detector circuit converts the signal from the secondary power amplifier to a full-wave rectified log-linear DC signal that is logarithmically proportional to the controlling signal. The DC signal output from the log-detector circuit is fed to the main power amp to control it.
Abstract:
One method disclosed herein includes forming a plurality of source/drain contacts that are conductively coupled to a source/drain region of a plurality of transistor devices, wherein at least one of the source/drain contacts is a local interconnect structure that spans the isolation region and is conductively coupled to a first source/drain region in a first active region and to a second source/drain region in a second active region, and forming a patterned mask layer that covers the first and second active regions and exposes at least a portion of the local interconnect structure positioned above an isolation region that separates the first and second active regions. The method further includes performing an etching process through the patterned mask layer to remove a portion of the local interconnect structure, thereby defining a recess positioned above a remaining portion of the local interconnect structure, and forming an insulating material in the recess.