摘要:
The present invention relates to a roofing underlayment system comprising two layers of a coated structural article which comprises a substrate having an ionic charge coated with a coating having essentially the same ionic charge or one layer of such coated structural article in combination with one layer of felt material. The coating of the coated structural article consists essentially of a filler material and a binder material wherein the binder material bonds the filler material together and to the substrate and wherein the coating does not bleed through the substrate. The roofing underlayment system of the present invention can impart a Class B or better (Class A) fire rating to a roof assembly.
摘要:
The present disclosure relates to surface covering building materials for roofs, sidewalls and other exterior surfaces exposed tb the weather such as, but not limited to, asphaltic and non-asphaltic roofing materials, wherein said surface covering building materials exhibit long-term resistance to microbial growth-induced staining. The surface covering building materials include a component having antimicrobial potential which consists essentially of (a) a copper component or a tin component and (b) a barium metaborate monohydrate component.
摘要:
Roofing material is improved by adhering to at least part of its lower surface a backing material consisting essentially of a fiber component and a binder component. Acceptable fibers include polyester, glass and woodpulp. In a preferred embodiment, the fiber component is a mixture of polyester and glass fibers and the binder is a latex binder.
摘要:
A single layer roofing material having a headlap portion and a tab portion wherein the headlap portion has a color-value gradient or gradation and the tab portion has tabs and openings. The tabs may have a relatively uniform color. Openings between tabs expose the color gradient of the headlap portion when a first sheet of the roofing material is installed over a second sheet on a structure. A plurality of horizontal striations may be used to establish the desired color-value gradient. An illusion of depth or thickness is created when the roofing material is applied to a structure, such as a roof deck. The amount of tone and contrast may be selected to create the desired illusion of depth or thickness. The amount of contrast may be varied depending upon the color selected for each roofing material. The number of horizontal striations and their width may also be varied to provide the desired color-value gradient. Tab color, shape and size may also be varied to enhance the illusion of depth.
摘要:
A roofing system comprising laminated roofing shingles having a reduced-width headlap portion and a buttlap portion, wherein the roofing system comprises a plurality of courses, and wherein a trailing edge of a subsequently installed shingle in a course overlaps the leading edge of an adjacent previously installed shingle in the same course. The reduced-width headlap portion of the roofing shingles has a width that is less than the width of the buttlap portion. The roofing shingle comprises a first and a second shingle sheet and the lateral edges of the first shingle sheet are aligned with the lateral edges of the second sheet.
摘要:
A composite material comprising a substrate having an ionic charge which is coated with a coating having essentially the same ionic charge and a metallic component adhered on one or both sides of the coated substrate. The coating consists essentially of a filler material comprising clay and a binder material. The substrate is preferably fiberglass, the filler material may further comprise at least one additional filler selected from the group consisting of decabromodiphenyloxide, antimony trioxide, fly ash, charged calcium carbonate, mica, glass microspheres and ceramic microspheres and mixtures thereof and the binder material is preferably acrylic latex. The metallic component is preferably aluminum foil. The composite material has heat insulating and fire resistant characteristics.
摘要:
A roofing material comprising an upper surface and a lower surface, wherein the upper surface includes reduced-particle size granules and may further include a reduced-thickness face coating. The thickness of the upper surface is related to the particle size of the granules deposed on the face coating. A smaller particle size granule than those used in traditional roofing shingles is utilized in the upper surface which may allow for a reduced-thickness face coating while not sacrificing the retention of the granules on the surface of the roofing material or desired physical characteristics. The face coating may include a reduced amount of filler material, such as mineral fillers, than face coatings of traditional roofing materials.
摘要:
The disclosed principles provide a roofing product and related methods of manufacturing having antimicrobial properties. The antimicrobial properties are provided by an antimicrobial delivery system including antimicrobial materials compounded, e.g., mixed together and melted, with polymeric materials. The antimicrobial delivery system is applied to roof covering material during the production process. The roof covering material may be sheets, shingles, panels, or roll stock.
摘要:
Disclosed herein are embodiments of a multi-layer nonwoven fiber material, and related methods of manufacturing the material. In one exemplary embodiment, the fiber material includes a first layer of directionally aligned fibers together with a second layer of randomly dispersed fibers dispersed over the first layer. Consistent with one exemplary method for manufacturing a nonwoven fiber material, the method includes dispersing a first plurality of fibers horizontally in one or more predetermined directions, as well as dispersing a second plurality of fibers horizontally in random directions. In such an embodiment, the second plurality of fibers is dispersed over the first plurality of fibers. Moreover, an exemplary embodiment of a roofing shingle employing a nonwoven fiber material as described herein is as disclosed.
摘要:
Disclosed roofing shingles and related methods of manufacturing provide a reinforced material that strengthens the bond between shingles by reducing the affect of heat on the sealant/adhesive between shingles in one or more areas where sealant/adhesive is applied or where it contacts other shingles once installed on a roof deck. The reinforcement material acts as fiber reinforcement to the sealant/adhesive. The reinforcement material intertwines with the sealant/adhesive, and thereby helps the shingles resist delaminating or slipping or blow-off when subjected to high heat conditions or on very steep sloped roofs. The reinforcement material helps retain the strength of the adhesive bond between shingles in these conditions by providing fiber reinforcement to the adhesive bond. Thus, as the adhesive turns from a solid state to a more liquefied state in hot temperatures, the totality of the reinforcement material does not so transform, and thus retains more strength in the adhesive bond between the two shingles than mere adhesive/sealant alone.