Abstract:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a M tine elements arrayed in a tine element array along a segment of the lead proximal to the stimulation electrode array. Each tine element comprises at least N flexible, pliant, tines, each tine having a tine width and thickness and extending through a tine length from an attached tine end to a free tine end. The attached tine end is attached to the lead body from a tine attachment site and supports the tine extending outwardly of the lead body and proximally toward the lead proximal end. The M×N tines are adapted to be folded inward against the lead body when fitted into and constrained by the lumen of an introducer such that the tine free ends of more distal tines of more distal tine elements are urged toward or alongside the attached tine ends of the adjacent more proximal tines of more proximal tine elements, and the folded tines do not overlap one another.
Abstract:
A one-piece, single-use disposable device for transurethral needle ablation (TUNA) of prostate tissue to alleviate BPH is disclosed. The device may include a flexible catheter tip including a rigid core and a flexible tip. The device may also include a single use lockout to help ensure that the device is used to perform only one ablation procedure on a single patient. The device may further include a simplified needle deployment mechanism and/or an automatic needle retraction mechanism.
Abstract:
Methods and apparatus for implanting a stimulation lead in a patient's sacrum to deliver neurostimulation therapy that can reduce patient surgical complications, reduce patient recovery time, and reduce healthcare costs. A surgical instrumentation kit for minimally invasive implantation of a sacral stimulation lead through a foramen of the sacrum in a patient to electrically stimulate a sacral nerve comprises a needle and a dilator and optionally includes a guide wire. The needle is adapted to be inserted posterior to the sacrum through an entry point and guided into a foramen along an insertion path to a desired location. In one variation, a guide wire is inserted through a needle lumen, and the needle is withdrawn. The insertion path is dilated with a dilator inserted over the needle or over the guide wire to a diameter sufficient for inserting a stimulation lead, and the needle or guide wire is removed from the insertion path. The dilator optionally includes a dilator body and a dilator sheath fitted over the dilator body. The stimulation lead is inserted to the desired location through the dilator body lumen or the dilator sheath lumen after removal of the dilator body, and the dilator sheath or body is removed from the insertion path. If the clinician desires to separately anchor the stimulation lead, an incision is created through the entry point from an epidermis to a fascia layer, and the stimulation lead is anchored to the fascia layer. The stimulation lead can be connected to the neurostimulator to delivery therapies to treat pelvic floor disorders such as urinary control disorders, fecal control disorders, sexual dysfunction, and pelvic pain.
Abstract:
The invention is directed to a technique for delivering a denervating agent to a patient's prostate gland. In particular, the invention is directed to a transrectal technique for delivering the denervating agent. Devices and systems are also described for use in implementing the technique.
Abstract:
The invention is directed to a technique for delivering a denervating agent to a patient's prostate gland. In particular, the invention is directed to a transperineal technique for delivering the denervating agent. Devices and systems are also described for use in implementing the technique.
Abstract:
A suture anchor for securing a therapy delivery element in a desired location within a living body using a suture material. The suture anchor includes an inner sleeve with a primary lumen sized to receive the therapy delivery element. The inner sleeve includes a compliant material having a first durometer. An anchor body extends around at least a portion of the inner sleeve and includes a portion of the primary lumen. The anchor body includes a compliant material having a second durometer less than the first durometer. At least one exterior suture groove is located on the anchor body to receive the suture material. The exterior suture groove extends substantially to the inner sleeve so the suture material engages directly with the inner sleeve.
Abstract:
A therapy delivery element adapted to be implanted into a living body. The therapy delivery element includes an electrode portion with a plurality of electrodes. At least one elongated lead body is attached to the electrode portion. The elongated lead body includes a stylet coil having a stylet coil lumen. The stylet coil extends within the elongated lead body and along at least a portion of the electrode portion. A conductor assembly with a plurality of insulated electrical conductors is braided to extending around the stylet coil and to electrically couple to one or more of the electrodes. The conductor assembly includes an inner lumen with a diameter greater than an outside diameter of the stylet coil. Axial elongation of the elongated lead body reduces the inner diameter of the conductor assembly. A low durometer insulator extends around the conductor assembly. A stylet sized to slide freely within the stylet coil lumen is provided for use during implantation of the therapy delivery element into the living body.
Abstract:
A therapy delivery element adapted to be implanted into a living body. The therapy delivery element includes an electrode portion with a plurality of electrodes. At least one elongated lead body is attached to the electrode portion. The elongated lead body includes a stylet coil having a stylet coil lumen. The stylet coil extends within the elongated lead body and along at least a portion of the electrode portion. A conductor assembly with a plurality of insulated electrical conductors is braided to extending around the stylet coil and to electrically couple to one or more of the electrodes. The conductor assembly includes an inner lumen with a diameter greater than an outside diameter of the stylet coil. Axial elongation of the elongated lead body reduces the inner diameter of the conductor assembly. A low durometer insulator extends around the conductor assembly. A stylet sized to slide freely within the stylet coil lumen is provided for use during implantation of the therapy delivery element into the living body.
Abstract:
A burr hole plug comprises a plug base configured for being mounted around a burr hole. The plug base includes an aperture through which an elongated medical device exiting the burr hole may pass. The burr hole plug further comprises a retainer configured for being mounted within the aperture of the plug base. The retainer further includes first and second slidable clamping mechanisms configured for securing the medical devices therebetween within the aperture of the plug base. A method comprises introducing the medical device through the burr hole, mounting a plug base around the burr hole, such that the medical device extends through the plug base aperture, mounting the retainer within the aperture of the plug base, and sliding the first and second clamping mechanisms secure the medical device therebetween.
Abstract:
A burr hole plug comprises a plug base including a flange configured for being mounted around a burr hole, an aperture through which an elongated medical device may pass, and tabs configured for extending within the cranial burr hole to center the plug base relative to the cranial burr hole. The burr hole plug further comprises a retainer configured for being mounted within the aperture of the plug base to secure the medical device. A method may comprise locating the plug base within a burr hole, such that the tabs are disposed within the burr hole to center the plug base relative to the cranial burr hole, introducing the elongated medical device through the cranial burr hole and into the brain tissue of the patient, mounting the retainer within the aperture of the plug base, and actuating the retainer to secure the medical device.