Abstract:
A motor driving circuit and an application device are provided. In an embodiment, an AC switch is connected between first and second nodes. A rotational direction control circuit connects to the first and second nodes and is configured to selectively connect the first node to first terminal of an AC power supply through motor winding and connect the second node to second terminal of the AC power supply, or connect the first node to second terminal of AC power supply and connect the second node to first terminal of the AC power supply through the motor winding. A detecting circuit is configured to detect magnetic pole position of the rotor. A switch control circuit is configured to control the AC switch to be turned on or be turned off in a predetermined way based on magnetic pole position signal and potential difference between the first and second nodes.
Abstract:
The present teaching relates to a magnetic sensor comprising an input port to be connected to an external power supply, a magnetic field detecting circuit configured to generate a magnet detection signal, an output control circuit configured to control operation of the magnetic sensor in response to the magnet detection signal, and an output port. The magnetic field detecting circuit includes a magnetic sensing element configured to detect an external magnetic field and output a detection signal, a signal processing element configured to amplify the detection signal and removing interference from the detection signal to generate processed detection signal, and an analog-digital conversion element configured to convert the processed detection signal into a magnet detection signal, and the output control circuit is configured to control the magnetic sensor to operate in at least one of a first state and a second state responsive to at least the magnet detection signal.
Abstract:
An actuator and its clutch are provided. The clutch includes a driving shaft; a mounting base fixed to the driving shaft for rotation with the driving shaft; a connecting base for connecting with a load, the connecting base including fingers surrounding an outer circumference of the driving shaft; resilient member including a resilient member, the resilient member having two ends respectively fixed to the mounting base and the connecting base, the resilient member surrounding an outer circumference of the connecting tabs. When a rotation speed of the driving shaft is greater than a rotation speed of the connecting base, an inner diameter of the resilient member gradually decreases so as to gradually couple the coupling portion with the driving shaft, such that the rotation speed of the coupling portion gradually approaches or reaches the rotation speed of the driving shaft. The present invention can provide a buffering function at the phase of the startup of the motor to avoid the motor startup failure and damage to the motor.
Abstract:
A magnetic sensor integrated circuit, a motor assembly and an application device are provided. The integrated circuit includes a housing, a semiconductor substrate, at least one input port and an output port, and an electronic circuit arranged on the semiconductor substrate. The electronic circuit includes a rectifying circuit, a magnetic field detection circuit configured to detect an external magnetic field and output magnetic field detection information, and an output control circuit connected to the rectifying circuit, and configured to control, at least based on the magnetic field detection information, the integrated circuit to operate in at least one of a first state in which a load current flows from the output port to an outside of the integrated circuit and a second state in which a load current flows from the outside of the integrated circuit to the output port. The load current flows through the rectifying circuit.
Abstract:
A motor driving circuit drives a motor. The motor driving circuit comprises a controllable bidirectional alternate current switch, a detection circuit. The controllable bidirectional alternate current switch is connected in series to a winding of the motor between two terminals of an alternate current power supply. The detection circuit is configured to detect a magnetic pole position of a rotor of the motor and output a magnetic pole position signal. And a switch state of the controllable bidirectional alternate current switch is controlled to determine a rotation direction of the motor according to a control signal and polarity of the alternate power supply.
Abstract:
A magnetic sensor integrated circuit, a motor assembly and an application device are provided. The magnetic sensor integrated circuit includes a magnetic field detection circuit and an output control circuit. The magnetic field detection circuit is configured to detect a magnetic field of a rotor of a motor and output magnetic field detection information. The output control circuit includes a first switch and a second switch. The first switch and the output port are connected in a first current path. The second switch and the output port are connected in a second current path having a direction opposite to that of the first current path. The first switch and the second switch are selectively turned on based on the magnetic field detection information, so as to control an energizing mode of the motor.
Abstract:
The present teaching relates to a magnetic sensor that comprises a housing, an input port and an output port, both extending from the housing and the input port being connected to an external alternating current (AC) power supply, and an electrical circuit. The electrical circuit comprises an output control circuit coupled with the output port and configured to be responsive to a magnetic induction signal to control the magnetic sensor to operate in a state in which a load current flows through the output port when a predetermined condition is satisfied, and operate in another state when the predetermined condition is not satisfied. The operating frequency of the magnetic sensor is positively proportional to the frequency of the external AC power supply.
Abstract:
A motor driving circuit drives a motor. The motor driving circuit includes a controllable bidirectional alternate current switch, a sensor, a rotation direction control circuit and a switch control circuit. The controllable bidirectional alternate current switch is connected to the motor and an alternate current power supply. The sensor detects a magnetic pole position of a rotor. The rotation direction control circuit controls a current flowing direction through a power supply terminal and a ground terminal of the sensor responsive to rotation direction set of the motor, to determine a phase of a detection signal outputted at an output terminal of the sensor. The switch control circuit controls a switch state of the controllable bidirectional alternate current switch to determine a rotation direction of the motor responsive to the detection signal and a polarity of the alternate current power supply.
Abstract:
A refrigeration apparatus includes a fan and a motor for driving the fan. The motor is a single phase synchronous alternating current motor. In comparison with the traditional motor, the single phase synchronous alternating current motor has a reduced size and reduced cost, while ensuring the stable performance.
Abstract:
A motor driving circuit and a motor component are provided. The motor driving circuit includes a bidirectional alternating current switch connected in series with a motor across two terminals of an external alternating current power supply, where the bidirectional alternating current switch is connected between a first node and a second node; a rectifying circuit; a magnetic sensor, configured to detect a magnetic field of a rotor and output a corresponding magnetic inductive signal; a first voltage drop circuit and a second voltage drop circuit connected in series between the first input terminal of the rectifying circuit and the first node, where there is a third node between the first voltage drop circuit and the second voltage drop circuit, and the first voltage drop circuit is connected between the first node and the third node; a switch circuit connected between the third node and a control terminal of the bidirectional alternating current switch, where the switch circuit includes a first terminal, a second terminal, a control terminal and a switch arranged between the first terminal and the second terminal; and a switch control circuit connected between the control terminal of the switch circuit and an output terminal of the magnetic sensor.