摘要:
T cell receptors (TCRS) that have higher affinity for a ligand than wild type TCRs are provided. These high affinity TCRs are formed by mutagenizing a T cell receptor protein coding sequence to generate a variegated population of mutants of the T cell receptor protein coding sequence; transforming the T cell receptor mutant coding sequence into yeast cells; inducing expression of the T cell receptor mutant coding sequence on the surface of yeast cells; and selecting those cells expressing T cell receptor mutants that have higher affinity for the peptide/MHC ligand than the wild type T cell receptor protein. The high affinity TCRs can be used in place of an antibody or single chain antibody.
摘要:
The present invention is based, in part, on our discovery that EGF can be engineered to generate mutants that bind to the EGF receptor (EGFR) of a cell and that have a desirable effect on the activity of the cell. For example, the mutants can agonize the receptor (i.e., increase a biological activity of the receptor), or antagonize the receptor (i.e., decrease or inhibit a biological activity of the receptor). In turn, the rate at which the cell proliferates, for example, can be changed. Moreover, some of these mutants bind EGFR with a higher affinity than wild-type EGF exhibits. The affinity may increase by about, for example, 2-, 5-, 10-, 15-, 20-, 25-, 30-, 50-, or 100-fold relative to wild-type EGF.
摘要:
The present invention relates to improved antibodies against tumor surface antigens and their use in the treatment of tumors. Of particular interest are highly stable, humanized, high affinity antibodies against carcinoembryonic antigen (CEA), especially the antibody we have termed sm3E, which is derived from the scFv antibody MFE-23. Such antibodies have the potential for improved therapeutic efficacy.
摘要:
The present invention provides a genetic method for tethering polypeptides to the yeast cell wall in a form accessible for binding to macromolecules. Combining this method with fluorescence-activated cell sorting provides a means of selecting proteins with increased or decreased affinity for another molecule, altered specificity, or conditional binding. Also provided is a method for genetic fusion of the N terminus of a polypeptide of interest to the C-terminus of the yeast Aga2p cell wall protein. The outer wall of each yeast cell can display approximately 104 protein agglutinins. The native agglutinins serve as specific adhesion contacts to fuse yeast cells of opposite mating type during mating. In effect, yeast has evolved a platform for protein-protein binding without steric hindrance from cell wall components. As one embodiment, attaching an scFv antibody fragment to the Aga2p agglutinin effectively mimics the cell surface display of antibodies by B cells in the immune system for affinity maturation in vivo. As another embodiment, T cell receptor mutants can be isolated by this method that are efficiently displayed on the yeast cell surface, providing a means of altering T cell receptor binding affinity and specificity by library screening.
摘要:
The present invention provides a genetic method for tethering polypeptides to the yeast cell wall in a form accessible for binding to macromolecules. Combining this method with fluorescence-activated cell sorting provides a means of selecting proteins with increased or decreased affinity for another molecule, altered specificity, or conditional binding. Also provided is a method for genetic fusion of the N terminus of a polypeptide of interest to the C-terminus of the yeast Aga2p cell wall protein. The outer wall of each yeast cell can display approximately 104 protein agglutinins. The native agglutinins serve as specific adhesion contacts to fuse yeast cells of opposite mating type during mating. If effect, yeast has evolved a platform for protein-protein binding without steric hindrance from cell wall components. As one embodiment, attaching an scFv antibody fragment to the Aga2p agglutinin effectively mimics the cell surface display of antibodies by B cells in the immune system for affinity maturation in vivo. As another embodiment, T cell receptor mutants can be isolated by this method that are efficiently displayed on the yeast cell surface, providing a means of altering T cell receptor binding affinity and specificity by library screening.
摘要:
The present invention is based, in part, on our discovery of immunoglobulins (e.g., immunoglobulin G (IgG)) polypeptides (e.g., murine or human IgG, such as human IgG1) that are aglycosylated yet retain the ability to bind to an Fc receptor, such as an activating Fc receptor (e.g., FcγRIIA and/or FcγRIIIA).
摘要:
The present invention relates to mutant IL-2 polypeptides that act as receptor antagonists. The mutant IL-2 polypeptides bind CD 25 but do not activate the IL-2 receptor. Also provided are methods of using the mutant IL-2 polypeptides, for example, to treat a patient who has cancer or a viral infection. The mutant polypeptides can also be used in various delivery systems.
摘要:
The present invention features, inter alia, compositions and methods for the treatment of cancer and infectious disease. The compositions include engineered proteins that specifically bind a metal chelate and may be bispecific. For example, the engineered proteins may bind (a) a target (e.g., a cellular protein) on a cancerous cell or a pathogen and (b) a metal chelate comprising DOTA, or an active variant thereof, and a metal ion such as a radionuclide. By virtue of the multiple binding sites, the engineered protein effectively delivers a metal chelate to a cell one wishes to destroy.
摘要:
The present invention features engineered proteins that include a first polypeptide that specifically binds a first target (e.g., a cellular target, such as a cell-surface antigen) and a second polypeptide that selectively binds an activating FcR.
摘要:
The present invention relates to IL-2 mutants with increased affinity for the IL-2 alpha-receptor subunit (IL-2Rα). The invention thus includes IL-2 mutants with improved biological potency. The invention also includes methods for directed evolution of IL-2α using yeast surface display to generate mutants with increased affinity for IL-2Rα.