Abstract:
The present disclosure is directed to a method of determining at least one correctable for a process tool. In an embodiment, the method includes the steps of: measuring one or more parameter values at one or more measurement locations of each field of a selection of measured fields of a wafer; estimating one or more parameter values for one or more locations of each field of a selection of unmeasured fields of the wafer; and determining at least one correctable for a process tool based upon the one or more parameter values measured at the one or more measurement locations of each field of the selection of measured fields of the wafer and the one or more parameter values estimated for the one or more locations of each field of the selection of unmeasured fields of the wafer.
Abstract:
A lithography system includes an illumination source and a set of projection optics. The illumination source directs a beam of illumination from an off-axis illumination pole to a pattern mask. The pattern mask includes a set of pattern elements to generate a set of diffracted beams including illumination from the illumination pole. At least two diffracted beams of the set of diffracted beams received by the set of projection optics are asymmetrically distributed in a pupil plane of the set of projection optics. The at least two diffracted beams of the set of diffracted beams are asymmetrically incident on the sample to form a set of fabricated elements corresponding to an image of the set of pattern elements. The set of fabricated elements on the sample includes one or more indicators of a location of the sample along an optical axis of the set of projection optics.
Abstract:
The determination of in-plane distortions of a substrate includes measuring one or more out-of-plane distortions of the substrate in an unchucked state, determining an effective film stress of a film on the substrate in the unchucked state based on the measured out-of-plane distortions of the substrate in the unchucked state, determining in-plane distortions of the substrate in a chucked state based on the effective film stress of the film on the substrate in the unchucked state and adjusting at least one of a process tool or an overlay tool based on at least one of the measured out-of-plane distortions or the determined in-plane distortions.
Abstract:
Methods and systems for performing semiconductor metrology directly on device structures are presented. A measurement model is created based on measured training data collected from at least one device structure. The trained measurement model is used to calculate process parameter values, structure parameter values, or both, directly from measurement data collected from device structures of other wafers. In some examples, measurement data from multiple targets is collected for model building, training, and measurement. In some examples, the use of measurement data associated with multiple targets eliminates, or significantly reduces, the effect of under layers in the measurement result, and enables more accurate measurements. Measurement data collected for model building, training, and measurement may be derived from measurements performed by a combination of multiple, different measurement techniques.
Abstract:
Disclosed are apparatus and methods for performing small angle x-ray scattering metrology. This system includes an x-ray source for generating x-rays and illumination optics for collecting and reflecting or refracting a portion of the generated x-rays towards a particular focus point on a semiconductor sample in the form of a plurality of incident beams at a plurality of different angles of incidence (AOIs). The system further includes a sensor for collecting output x-ray beams that are scattered from the sample in response to the incident beams on the sample at the different AOIs and a controller configured for controlling operation of the x-ray source and illumination optics and receiving the output x-rays beams and generating an image from such output x-rays.
Abstract:
A lithography system includes an illumination source and a set of projection optics. The illumination source directs a beam of illumination from an off-axis illumination pole to a pattern mask. The pattern mask includes a set of pattern elements to generate a set of diffracted beams including illumination from the illumination pole. At least two diffracted beams of the set of diffracted beams received by the set of projection optics are asymmetrically distributed in a pupil plane of the set of projection optics. The at least two diffracted beams of the set of diffracted beams are asymmetrically incident on the sample to form a set of fabricated elements corresponding to an image of the set of pattern elements. The set of fabricated elements on the sample includes one or more indicators of a location of the sample along an optical axis of the set of projection optics.
Abstract:
The determination of in-plane distortions of a substrate includes measuring one or more out-of-plane distortions of the substrate in an unchucked state, determining an effective film stress of a film on the substrate in the unchucked state based on the measured out-of-plane distortions of the substrate in the unchucked state, determining in-plane distortions of the substrate in a chucked state based on the effective film stress of the film on the substrate in the unchucked state and adjusting at least one of a process tool or an overlay tool based on at least one of the measured out-of-plane distortions or the determined in-plane distortions.