摘要:
An adhesive composition includes a phenoxy resin having a bisphenol S skeleton in a structure and 10 to 100 parts by weight of a maleimide compound based on 100 parts by weight of the phenoxy resin. The maleimide compound has a plurality of maleimide groups in a structure and is at least one of a first maleimide compound having a melting temperature of 160° C. or lower and a gelling time at 200° C. of 180 to 350 seconds and a second maleimide compound having a melting temperature of 160° C. or lower and a gelling time at 250° C. of 110 to 150 seconds. A heat resistant adhesive film may be formed by coating the adhesive composition on a substrate film, and a wiring film may have a conductor wiring layer put between such heat resistant adhesive films.
摘要:
An electrode lead connection body includes a first member that includes a same material as the positive electrode lead and is configured to be connected the positive electrode lead, a second member that includes a same material as the negative electrode lead and is configured to be connected the negative electrode lead, the first and second members being joined to each other at a portion excluding a positive electrode joint as a portion to be joined to the positive electrode lead and a negative electrode joint as a portion to be joined to the negative electrode lead, and an insulating material at a position between the first and second members and near a joint portion to join the first and second members so as to prevent a contact between the first and second members.
摘要:
There is provided a charged particle migration-type display panel (1) which has a plurality of cells (40) partitioned by partitions (31) between a transparent substrate (10) and a back substrate (20) placed opposite to each other, and charged particles (41, 42) sealed in the respective cells (40), and in which the partitions (31) provided upright on the back substrate (20) are formed of a translucent material, and the tips and the side faces of the partitions (31) are covered with a resin (32) containing an opaque or semi-transparent dark-colored coloring material, thereby forming a black matrix structure.
摘要:
A base station apparatus is obtained that reduces, by a software process, delay time occurring in a call connection procedure. A base station apparatus 1 that performs radio communication with a mobile phone terminal 8 includes a radio resource managing unit 4 that manages a radio resource used for the radio communication; and a call connection processing unit 5. The call connection processing unit 5 is provided as a functional block independent of the radio resource managing unit 4 and performs a call connection process for the mobile phone terminal 8.
摘要:
A communication system (1) includes a mobile communication network (2); a fixed communication network (3) connected to the mobile communication network (2); and a plurality of radio base stations capable of communicating with a mobile terminal (100) by radio communication. The radio base stations include a first base station (41, 42) connected to the mobile communication network (2); and second base stations (51, 52) connected to the fixed communication network (3) through wire communication lines (61, 62). A communication connection using a predetermined interface is established between one of the second base stations (51) and one of neighboring base stations (the first base station (42) and another one of the second base stations (52)) located in the neighborhood of the one of the second base stations (51).
摘要:
A slab having a predetermined composition is heated to 1280° C. or more. The slab is hot-rolled to obtain a hot-rolled steel sheet. The hot-rolled steel sheet is annealed to obtain an annealed steel sheet. The annealed steel sheet is cold-rolled to obtain a cold-rolled steel sheet. The cold-rolled steel sheet is decarburization annealed to obtain a decarburization annealed steel sheet. The decarburization annealed steel sheet is coiled in a coil state. The coil-state decarburization annealed steel sheet is finish-annealed. The cold-rolled steel sheet is heated to a temperature of 800° C. or more at a rate of 30° C./sec or more and 100° C./sec or less during increasing temperature of the cold-rolled steel sheet in the decarburization annealing or before the decarburization annealing. The decarburization annealed steel sheet is heated at a rate of 20° C./h or less within a temperature range of 750° C. or more and 1150° C. or less during increasing temperature of the decarburization annealed steel sheet in the finish annealing.
摘要:
There is provided a method for manufacturing a substrate for a display panel including a rib and a flat surface (hereinafter referred to as “substrate surface”) formed on one surface, the substrate surface being the region other than the rib in the substrate and including an electrode provided thereon, the substrate having a convex/concave shape (hereinafter referred to as “a substrate convex/concave shape”) composed of the rib and the substrate surface, comprising: a step 1 for positioning a mold having a convex/concave shape (hereinafter referred to as “a mold convex/concave shape) that is reversed to the substrate convex/concave shape so that the mold convex/concave shape and the substrate convex/concave shape are fitted to each other, the mold being provided with a flat surface (hereinafter referred to as “a mold convex surface”) facing to the substrate surface at a convex portion of the mold convex/concave shape, and with a surface (hereinafter referred to as “a mold concave bottom surface”) facing to a top surface of the rib (hereinafter referred to as “a rib top surface”) at a concave portion of the mold convex/concave shape; a step 2 performed after the step 1, for injecting an electrode material from an injection inlet opened on the mold convex surface; and a step 3 performed after the step 2, for solidifying the electrode material and detaching the mold from the substrate.
摘要:
There is provided a manufacturing method for a charged particle migration type display panel which has a plurality of cells partitioned between two substrates placed opposite to each other by partition walls, and charged particles enclosed in the individual cells, the method including a partition wall forming step of forming the partition walls in one of the substrates, and an electrode film forming step of forming, by vapor deposition, an electrode film on a surface of the substrate where the partition walls are formed, wherein an electric contact is disconnected between the electrode film formed on the substrate surface and a surplus electrode film formed on a side face of the partition wall in the electrode film forming step by performing an insulating part forming step of forming an insulating part so shaped that a deposition material does not reach vicinities of at least bases of the partition walls before the electrode film forming step.
摘要:
A storage battery which can further intensify the sealing properties of the electrode rod piercing portion thereof, a technique capable of increasing the area of the sealing surface at the sealed portion of the storage battery, a technique capable of certainly preventing the missing of mounting of a rubber-based sealing material corresponding to O-ring at the sealed portion of the storage battery, and an insulating material having an excellent corrosion resistance to highly corrosive battery content and a battery container including same are provided.An electrode rod 14 is allowed to extend upward through an annular member 15, a pressing member 18 is placed on the annular member 15, and a nut 22 is then threaded on a thread portion 21. This threading job is effected until the pressing member 18 is placed on and stopped by a collar portion 23. At the time when threading ends, a neck portion 25 is somewhat compressed to exhibit sealing properties. At the same time, a head portion 26 is drastically compressed and thus forms a first sealing portion at Point P1, a second sealing portion at Point P2 and a third sealing portion at Point P3. Further, while a disc sealing member 23 being properly compressed by the annular member 15 made of a resin and a current collecting plate 17, they are put in a vacuum heating furnace where they are then subjected to heat treatment at 160° C. in vacuo for 72 hours. This heat treatment allows PET film 25 to be heat-fused to the annular member 15 made of a resin and PET film 26 to be heat-fused to the current collecting plate 17. Moreover, a lid body 12 is formed integrally with an annular member 15 of rubber having a spindle-shaped section. And, this annular member 15 of rubber is bonded to PET film 32, 32 by the action of adhesive layer 33, 33. Since this bonding is firm, the annular member 15 of rubber cannot be detached from the lid body 12 during use.Further, an insulating material for electrode mounting to be used in a battery container which is made of a polyethylene terephthalate resin and a container having a lid member obtained by forming a polyester resin-coated aluminum sheet double-seamed attached to the opening of the body of a can are provided, and a polyethylene terephthalate resin insulating material for electrode mounting is attached to a through-hole provided piercing the central part of the lid member with an adhesive including (B) a hardener made of at least one of phenolic resin, amino resin and polyisocyanate resin incorporated in (A) a polyester resin including a dicarboxylic acid component mainly including terephthalic acid and a glycol component and having a glass transition temperature of from 30° C. to 110° C., whereby the battery content has an excellent corrosion resistance to the electrolyte including a highly corrosive propylene carbonate salt as a main component, etc. and an enhanced leakage resistance.
摘要:
There is provided a resonant-oscillating-device fabrication method comprising a thickness measurement step of measuring a thickness of a substrate, a piezoelectric-layer formation condition determination step of determining conditions of forming a piezoelectric layer to bring frequency of resonant oscillation of an oscillating element to a desired resonant frequency in accordance with the thickness of the substrate measured in the thickness measurement step, and a piezoelectric-element formation step of forming the piezoelectric element in accordance with the piezoelectric-layer formation conditions determined in the piezoelectric-layer formation condition determination step.