摘要:
To provide a pattern generating method for a semiconductor device capable of forming a highly reliable semiconductor device, the accuracy of which is high.A method of generating a pattern for a semiconductor device comprises: a step of designing and arranging a layout pattern of a semiconductor chip; a step of extracting an area ratio of the mask pattern from the layout pattern; and a step of adding and arranging a dummy pattern to the layout pattern, while consideration is given to the most appropriate area ratio of the layout pattern of the layer obtained according to a process condition of the layer composing the layout pattern, so that the area ratio of the layer can be the most appropriate area ratio.
摘要:
To provide a semiconductor device characterized in that: a decoupling capacitor can be increased; noise generated from an electric power supply can be effectively absorbed; and a stable operation of a circuit can be realized.Irrespective of whether or not a region is close to a power supply wiring or a ground wiring, MOS is spread all over a spare area of a chip and connected to a power supply wiring and ground wiring by utilizing a wiring layer and diffusion layer.
摘要:
A wiring pattern has been enlarged by mutually different values, thereby forming two enlarged wiring patterns are formed. Then, regions where the two enlarged wiring patterns overlap each other are removed, thereby forming a dummy pattern. Alternatively, a simple-figure pattern made of simple figures is formed and a dummy pattern is formed using the simple-figure pattern. A gap that is not wider than a predetermined value is located in a final wiring pattern made of the wiring pattern and the dummy pattern is defined as an air gap region. Thus, an interconnection structure incorporating air gaps between wiring patterns is formed.
摘要:
In order that CAD processing time required for modifying an input design pattern to compensate for optical proximity effects is reduced, increases in the number of base shapes when corrected data are converted into EB data are restricted, and false detection of defects in a photomask inspection process is restricted, the following steps are taken. At a shape selection step, rectangular shapes are divided into a dense rectangular shape group and a non-dense rectangular shape group according to the distance of each rectangular shape to an adjacent rectangular shape. At a number-of-shapeas comparison step, the number of shapes included in the dense rectangular shape group is compared to the number of shapes included in the non-dense rectangular shape group to select either shape group for correction. At a correction process selection step, a correction process suited for the selected shape group is selected. At a shape correction step, optical proximity correction is made. At a shape combining step, a group of corrected shapes and the rectangular shape group different from the selected one are combined.
摘要:
A method of inspecting a photomask for a semiconductor integrated circuit formed based on drawing pattern data, includes the steps of classifying a drawing pattern of the semiconductor integrated circuit into a plurality of ranks in accordance with a predetermined reference and extracting the same, determining inspecting accuracy for each of the ranks, and deciding quality of the photomask depending on whether the determined inspecting accuracy is satisfied.
摘要:
With respect to layout data of a semiconductor integrated circuit, a latch-up verifying operation is carried out in high precision. In a latch-up verifying method, a well region, a transistor region, and a substrate contact region are extracted from layout data of a semiconductor integrated circuit formed on a semiconductor substrate; and steps for separately setting over-sizing values are sequentially executed based upon the respective extracted information.
摘要:
After a layout for a semiconductor device including power and ground lines has been defined, patterns for bypass capacitors, which will be located under the power lines, are created. In this case, a pattern for a semiconductor device, where a bypass capacitor array is inlaid and substrate contacts are located under ground lines, is defined based on design rules input. Next, power lines are extracted and resized. Thereafter, logical operations are performed to place the bypass capacitors and the bypass capacitors are resized. Subsequently, logical operations are performed to define interconnecting diffused layers and the diffused layers are resized. Since the patterns for the power lines have already been defined before the patterns for the bypass capacitors are created, the patterns for the bypass capacitors to be placed under the power lines can be defined automatically. Thus, a pattern for a miniaturized semiconductor device with reduced power supply noise can be created automatically.
摘要:
A semiconductor device geometrical pattern correction process, semiconductor device manufacturing process and geometrical pattern extraction process are provided, which make it possible to eliminate the adverse effect of corner rounding accompanying miniaturization, that is, a decrease in the projection amount of a gate, while avoiding increased chip area. The correction process comprises a step 102 of detecting a concave diffusion layer corresponding portion and a step 103 of correcting either the concave diffusion layer corresponding portion or a transistor gate corresponding portion which projects from the concave diffusion layer corresponding portion in order to ensure the projection of the gate from the concave diffusion layer corresponding portion against possible corner rounding.