Abstract:
A method and apparatus for monitoring connectivity in a network at a bearer path layer are disclosed. For example, the method receives a request to monitor a user endpoint, identifies an internet protocol address of the user endpoint, an internet protocol address of each transport network element between the user endpoint and a bearer trace server, a bearer path identification of each bearer used by the user endpoint, a quality of service associated with each bearer used by the user endpoint, and a tunnel identification of each bearer used by the user endpoint; and performs a fault isolation and performance monitoring at a bearer path layer, wherein the fault isolation identifies a particular segment where a fault is detected at the bearer path layer.
Abstract:
In a particular embodiment, a method includes receiving a first request to retransmit a first packet. The method also includes selectively retransmitting the first packet based on a first list that identifies packets to retransmit and based on a second list that identifies packets that have been retransmitted.
Abstract:
A system and method of delivering video content is disclosed. In a particular embodiment, the method includes receiving channel selection data from a set-top box device via an Internet Protocol Television (IPTV) access network. The channel selection data indicates a selection of an IPTV channel. The method also includes sending a rapid channel change (RCC) request to a distribution switch/router system via a subscriber virtual local area network (VLAN) associated with the set-top box device after receiving the channel selection data. The RCC request indicates the selected IPTV channel.
Abstract:
A method of providing video content includes receiving a channel change data packet from a set-top box device at a subscriber premise via a packet-based video distribution network. The channel change data packet includes data indicating a requested channel and a channel change index value. The method also includes reading the channel change data packet to identify the channel change index value. The channel change index value indicates an available bandwidth at the subscriber premise to receive video content of the requested channel via the packet-based video distribution network. The method also includes allocating an overhead bandwidth to the set-top box device based on the channel change index value.
Abstract:
An SVC is established via an ATM switch port, which includes multiple virtual paths (VPs), by associating multiple virtual user-to-network interfaces (UNIs) to each of the VPs. Each of the VPs includes multiple virtual circuit (VC) ranges, each of which corresponds to a different virtual UNI. Each VC range includes at least one VC for control and at least one VC for data transfer. Associating the virtual UNIs to each of the VPs includes mapping each virtual UNI to a corresponding VC range within a VP based on a virtual path index (VPI)/virtual channel index (VCI) of the virtual UNI initially received by the ATM switch port.
Abstract:
A circuit for eliminating illegal data sequences from a data stream is disclosed. The circuit examines a portion of an input data stream. The previously received data sequence is then examined. If the previously received data matches an illegal sequence, the stored data is altered. The stored data is then outputted to form an output data sequence.
Abstract:
Systems and methods of automatically determining a set of route targets is provided. The method includes receiving network topology data specifying configuration of a network. The method also includes automatically converting the network topology data into route targets to be assigned to virtual routing and forwarding elements. The route targets are grouped into sets and duplicate sets of route targets are removed based on the route targets between duplicate sets of route targets identified as being the same. The method further includes generating a data record including information related to the set of route targets.
Abstract:
A system and method of delivering video content is disclosed. In a particular embodiment, the method includes storing video data packets of an Internet Protocol Television (IPTV) channel at an access switch/router system that communicates with an IPTV access network. The method also includes receiving data at the access switch/router system indicating a selection of the IPTV channel from a set-top box device via the IPTV access network. Further, the method includes sending copies of the stored video data packets of the IPTV channel to the set-top box device via the IPTV access network.
Abstract:
In an embodiment, a method of allocating media streams includes measuring real-time port usage data related to each of a plurality of physical ports associated with a link aggregation group. The method further includes selecting at least one, but not all, of the plurality of physical ports based on the real-time port usage data and sending a media stream to a network via the physical port.
Abstract:
A multi service platform having multiple layer switching includes a layer two switching component disposed within an enclosure of the multi service platform. A layer three switching component is disposed within and integrated together with the layer two switching component within the enclosure of the multi service platform. A connection, including an internal virtual UNI connection, terminates at the layer two switching component and at the layer three switching component. The connection is disposed internally within the multi service platform.