Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method and a base station for receiving uplink control signals in a wireless communication system are described. The base station receives a first uplink control channel in a mixed resource block from a first user equipment. The mixed resource block includes a plurality of subcarriers. The base station receives a second uplink control channel in the mixed resource block from a second user equipment. The first uplink control channel is identified by a first cyclic shift value. The second uplink control channel is identified by a second cyclic shift value that is different from the first cyclic shift value. The first uplink control channel carries a Hybrid Automatic Repeat Request (HARQ) acknowledgement/negative acknowledgement (ACK/NACK) of the first user equipment. The second uplink control channel carries a channel quality indicator (CQI) for the second user equipment and a HARQ ACK/NACK of the second user equipment.
Abstract:
A data transmitter for a wireless communication system is provided. Said apparatus comprises an OFDM (Orthogonal Frequency Division Multiplexing) symbol generating part that generates a plurality of OFDM symbols, a frame configuration part that configures a frame comprising includes said plurality of OFDM symbols, and a transmission part that transmits said plurality of OFDM symbols based on said frame that has been configured. Said frame is divided into a plurality of sub-frames, the number of OFDM symbols that are included in an optional sub-frame is any one of 5, 6, and 7, and the bandwidth of said wireless communication system is 8.75 MHz. Based on a new frame configuration, new parameter requirements may be satisfied taking backward compatibility into account.
Abstract:
A method of transmitting a cell type information, which is transmitted by a base station in a wireless communication system, is disclosed. The present invention includes broadcasting a boundary point information (Z) between a cell identity of a public ABS (advanced base station) and a cell identity of a private ABS via an S-SFH SP3 (secondary-super frame header subpacket3). In this case, the boundary point information (Z) is a range information of cell identity partitions partitioned by granularity of 10 sequences or 20 sequences per segment and a total number of the cell identity partitions is 16. Further, the range information of cell identity partitions includes information that all cell identities are cell identities of the private ABS or information that all cell identities are cell identities of the public ABS except for cell identities of a macro ABS.
Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.
Abstract:
A method of transmitting a control signal in a wireless communication system includes allocating a first sequence to spread a first control signal in a radio resource, allocating a second sequence to spread a second control signal in the radio resource, selecting one of the first control signal and the second control signal, generating a spread control signal by spreading the selected control signal, and transmitting the spread control signal in the radio resource, wherein the first sequence and the second sequence use different cyclic shifts of a base sequence.
Abstract:
A method for transmitting/receiving an additional control signal without any loss of bandwidth and power in an original Tx signal is disclosed. If the additional control signal is transmitted via the Tx signal composed of at least one of data and control signals, at least one of the amplitude and phase of the Tx signal of the time- and frequency-resource domain is modulated according to the additional control signal to be transmitted. The modulated Tx signal is transmitted to the receiver, so that the additional control signal can be transmitted irrespective of the original Tx signal. According to a modulation status of at least one of an amplitude and a phase of the Rx signal contained in the time- and frequency-resource domain, the additional control signal can be acquired.
Abstract:
A method and a user equipment for transmitting control information in a communication system are discussed. The method according to an embodiment includes multiplying a transmission information symbol s for the control information by a frequency direction sequence c(k) to generate a first output sequence s(k), where s(k)=s*c(k), k=0, . . . , Nk−1, and Nk corresponds to a number of subcarriers included in a resource block allocated for an uplink control channel; multiplying the first output sequence s(k) by a time direction sequence x(n) to generate a second output sequence s(k, n), where s(k, n)=s(k)*x(n), n=0, . . . , Nn−1, and Nn corresponds to a number of symbols used for transmission of the control information in a transmission time interval; and transmitting the second output sequence s(k, n) through the uplink control channel in the transmission time interval.