Abstract:
A device for the rapid precision positioning of a heavy carriage employs stationary positioning bar, for instance a part of a linear electric motor or a gear rack, and a cooperating moving part of the linear motor or a motor attached to the carriage. The carriage is rapidly and roughly displaced with a further drive which may be constituted by a further gear wheel that cooperates with a gear rack and is driven by a separate motor attached to the carriage. This further drive additionally delivers a certain force for the final positioning in such a way that the play between the gear wheel and the gear rack is eliminated by biasing. Instead of a second gear wheel together with its motor a toothed belt, also driven by a separate motor, a pneumatic cylinder or a linear motor may be used. These are mounted separately from the carriage and ar principally fixed in space.
Abstract:
The present invention relates to a tool head being movable between a component supply and a place, where a component is to be mounted. The tool head comprises a tool shaft (1). This can rotate in relation to the base structure of said tool head and is also axially displaceable in relation to said base. To reduce the inertia of the mass to be displaced and rotated the tool shaft (1) is irrotationally and axially movably supported in a front bearing (3). This front bearing (3) is rotatably and not axially movably supported in the base plate. The rotation of said bearing element (3) is realized by means of a driving motor (9) and a toothed belt (7). The shaft (1) is driven axially by a second driving motor (25) also provided with a driving belt (23). To this driving belt a support element (17) is attached. The support element (37) is guided by a linear guide bar (21) and is also connected to said tool shaft (1). This connection allows the rotational movement of said tool shaft (1) in relation to said support element (17) but not translational axial movements. In this way it is obtained that the movable element, in this case the tool shaft (1), has a small inertial mass as possible. The invention also relates to a tool shaft (1) of the kind mentioned.
Abstract:
An electric motor/generator includes a rotor with magnets mounted on the surface of the rotor, the magnets facing the stator over a gap. The magnets have a very high flux density but a limited ability to withstand high stator currents at high temperatures, preferably magnets made of the N48H material. By providing rotor magnet cooling means that reduces the temperature of the magnets by a cooling fluid, use of magnets with lower maximum working temperature and higher flux density is permitted and thereby higher flux can be obtained from the magnets.
Abstract:
An electrically controlled brake or clutch includes a rotatable first mechanical system (101, 108) and a second mechanical system that is stationary for the case of a brake but rotatable for the clutch case. In the second system windings are wound around two soft magnetic parts (102, 103) so that electric current flowing in the windings affects magnetic fluxes through the soft magnetic parts to move them in a direction that affects the effective length of an air gap in the closed main magnetic path. A spring (401) creates a force acting in a direction opposite that of the attraction force. The soft magnetic parts are arranged so that the main magnetic flux path passes along a closed loop about the rotational axis of the first mechanical system, this giving a compact design of the brake or clutch.
Abstract:
An actuator and movement linkage system for moving a load, such as a control surface of aircraft, in relation to a carrying structure includes an electric motor system, an actuator device connectable or connected to the load to move the load, the actuator device connected to the electric motor system to be driven thereby, and transfer units provided for mechanically connecting the actuator device to move the load. Fault tolerant and release devices are provided both in the electrical motor system and in the actuator device to make the actuator and movement linkage system fault tolerant to at least single faults in the actuator and movement linkage system,
Abstract:
A brushless electric motor system comprises a rotor and a stator comprising poles. Electrical phase windings have coils (U1-6, V1-6, W1-6) wound around the poles. Power switches (T1-24) controlled by a control device supply electric current the windings from positive and negative rails connected to power supply. For each phase at least one group of four power switches arranged in a H-bridge configuration is provided. The coils of each phase winding are preferably divided into winding group (U1-3, Ua-6, V1-3, V4-6, W1-3, W4-6) and the electric conductor of each winding group is then electrically conductor of the other winding groups. Then four power switches arranged in an H-configuration is provided for each winding group. The use of power switches in H-bridge configurations allows the faulty windings or winding groups to be disabled and that the rest of the windings or coils can be used for driving the rotor, this giving the motor system a high reliability. The current supplied to other windings or winding groups can then be increased to compensate for the faulty group. The coil groups can be separated from other coil groups by unwound stator poles. Current sensors (303) can sense the current in each winding group and be used to detect whether the currents are too high. The sensed currents can be used to identify fault conditions in the system so that then suitable switches can be disabled, disconnecting a faulty winding group.
Abstract:
A compact position and velocity transducer having a high speed resolution and a fast speed response and that does not place much demand on the precision of the bearings. The transducer includes an optical encoder that, when assembled in motors, is assembled on a short protruding part of the rotor close to the torque-creating parts. The optical incremental encoder signals are fed both to a moderate frequency digital counter that counts 4 counts per basic encoder period and to an A/D-converter that samples and digitizes the primary encoder analog signals. A processor uses a linearization algorithm on the sampled and digitized signals that yields position information that is locally highly continuous.
Abstract:
In a rotational/linear brushless DC motor/generator the rotor/slide has many equally spaced permanent magnet poles of alternating polarity and it has no or few magnetically permeable iron parts. These magnets cover typically slightly more than half the pole pitch in trapezoidal embodiments. The stator consists of one or several pairs of two stator parts facing each other. Each stator part has a plurality of poles with the same pitch as the rotor/slide poles. The stator parts in a pair are arranged on each side of the rotor/slide and are displaced 180 electrical degrees from each other. Each one of the two stator parts in a pair has windings for one phase in order to polarize the poles in the stator part in alternating polarity. The gaps between the stator poles facing the rotor/slide in the same stator part are small compared to the pole pitch. In this way high torque/force DC motors/generators with low weight and high efficiency are provided.
Abstract:
A device is proposed for applying material such as solder paste and glue in discrete points, particularly for applying solder paste on electronic circuit boards. The device comprises a pump house (202-205; 301, 307), a tube or a channel (206) by means of which material is fed to the pump house, a nozzle (111, 205) for feeding material from the pump house (202-205; 301, 307). Suitable upper and lower valve devices are arranged to block, at predetermined times, the feeding of material to and from the pump house (202-205; 301, 307). The lower valve device may possibly be replaced by a restriction device. As is conventional the pump house (202-205; 301, 307) comprises an outer pump cylinder (203; 307) and an inner piston (204; 301). The displacement of the piston (201; 301) is obtained by the fact that the piston is connected to a magnetostrictive rod (202; 308). This rod (202; 308) cooperates with a coil (208) arranged around the rod (202; 308). When an electric current is fed to this coil (208) the length of the rod will increase. A very rapid application of the material is achieved.