Abstract:
A method of managing data transmission for a receiving terminal of a first wireless system wherein the first wireless system coexists with at least one second wireless system includes receiving a transmission schedule of each of the at least one second wireless system; determining a usable time period for the first wireless system according to the transmission schedule of each of the at least one second wireless system; and sending a clear to send (CTS) to self signal or a power saving signal to indicate an interruption of the usable time period according to a length of the usable time period.
Abstract:
For LTE cellular data and Wi-Fi P2P technology coexistence scenario, a user equipment can generate in-device coexistence (IDC) indication message to the base station for DRX-based IDC solution. LTE data scheduling is described by a set of DRX parameters, while Wi-Fi P2P data scheduling is described by Opportunistic Power Saving (OppoPS) and Notification of Absence (NoA) parameters. When generating the IDC indication message for Wi-Fi P2P group client (GC), the DRX parameters must be selected carefully to maximize efficiency. Even though Wi-Fi shares less time, with proper time alignment, its coexistence performance could be better. For Wi-Fi P2P group owner (GO) with IDC TDM scheduling constraints, OppoPS and NoA should be aligned with DRX parameters to achieve best performance.
Abstract:
A method of fast link adaptation for Bluetooth long-range wireless networks is provided. A novel rate indication (RI) field is incorporated in a data packet to enable auto detection of rate adaptation at the receiver side. The data packet comprises a preamble, a first packet portion including the RI field, and a second packet portion including the PDU. The first packet portion is encoded with a first rate while the second packet portion is encoded with a second rate indicated by the RI field. The transmitting device raise/lower the encoding rate when the link quality is good/poor. The receiving device can provide recommended rate or link quality feedback information via an LMP message to help the transmitting device making rate adaptation decision. The transmitter can unilaterally decide the data rate for the second packet portion without receiver recommendation.
Abstract:
A wireless communication device is provided with a first radio module and a second radio module inside. The first radio module performs wireless transceiving according to a plurality of first traffic patterns which each indicates allocations of a plurality of first slots for a plurality of forthcoming transmitting or receiving operations, respectively. The second radio module determines an indicator indicating at least one of a plurality of second traffic patterns which each indicates allocations of a plurality of second slots for a plurality of forthcoming transmitting or receiving operations, respectively. Particularly, one or more allocations of the second slots are selectively determined according to the first traffic patterns. Also, the second radio module transmits the indicator to a peer communication device, so that the peer communication device performs transmitting or receiving operations according to the indicator.
Abstract:
A wireless device having a central control entity that coordinates multiple radio transceivers co-located within the same device platform to mitigate coexistence interference. The wireless device comprises an LTE transceiver, a WiFi transceiver, a BT transceiver, or a GNSS receiver. In one embodiment, the central control entity receives radio signal information from the transceivers and determines control information. The control information is used to trigger FDM solution such that the transceivers operate in designated frequency channels to mitigate co-existence interference. In another embodiment, the central control entity receives traffic and scheduling information from the transceivers and determines control information. The control information is used to trigger TDM solution such that the transceivers are scheduled for transmitting or receiving radio signals over specific time duration to mitigate co-existence interference. In yet another embodiment, power control solution is used to mitigate coexistence interference.
Abstract:
Methods for preventing coexistence interference between a Bluetooth Low Energy (BLE) radio and a collocated LTE radio are provided. In a first solution, the BLE radio adds padding bytes to BLE packets such that the total packet length falls in a specific range to prevent coexistence interference. In a second solution, the BLE radio limits the total BLE packet length to a predefined length to prevent coexistence interference. In a third solution, the data rate for transmitting the BLE packets is higher than a predefined rate to prevent coexistence interference. In a fourth solution, the BLE radio dynamically adjusts the time inter-frame-spacing (T_IFS) value to prevent coexistence interference with the collocated LTE radio.
Abstract:
A wireless communication apparatus includes a channel estimation circuit, a beamforming control circuit, and a transmit (TX) circuit. The channel estimation circuit estimates a channel between the wireless communication apparatus and another wireless communication apparatus during at least one first time slot. The beamforming control circuit determines beamforming coefficients according to the estimated channel. The TX circuit applies the beamforming coefficients to transmission of an output data during at least one second time slot later than the at least one first time slot. During the at least one second time slot, the output data is transmitted to another wireless communication apparatus via multiple antennae. The wireless communication apparatus performs communications according to a normal frequency hopping sequence in compliance with a communication specification.
Abstract:
A communication link checking method, applied to check a communication link of a first electronic device, which comprises: (a) receiving a report message, wherein the report message comprises received strength information indicating a received signal strength of a request message received by a second electronic device and comprises wanted strength information provided by the second electronic device; and (b) determining a quality of the communication link according to the received strength information and the wanted strength information.
Abstract:
A UE controls in-device coexistence (IDC) indication message generation to mitigate potential throughput impact on UE to maintain UE performance as much as possible. Under the proposed method, FDM-based solution is always preferred by the UE. Based on the IDC indication message generated by the UE, a network applies an IDC interference mitigation solution that prioritizes FDM-based solution. Specifically, the UE first sends an IDC message requesting FDM-based solution. In case the serving eNB does not respond, the UE sends a new IDC message by alternating IDC option. Even if a TDM-based solution has been received, the UE may continue requesting FDM-based solution to gain UE performance.
Abstract:
The invention provides a mobile communication device having a first wireless communication module with a strong driving circuit, and a second wireless communication module with a weak driving circuit. The first wireless communication module is coupled to the second wireless communication module via only one wire. The first wireless communication module sends a first traffic pattern of a first wireless transceiving to the second wireless communication module via the wire, and receives a second traffic of a second wireless transceiving from the second wireless communication module via the wire. The second traffic pattern indicates whether the second wireless communication module decides to use a remaining period of time, in which the first wireless communication module is not required to perform wireless transceiving, for the second wireless transceiving.