Abstract:
A network element includes circuitry and multiple ports. The multiple ports are configured to connect to a communication network. The circuitry is configured to receive via one of the ports a packet that originated from a source node and is destined to a destination node, the packet including a mark that is indicative of a cumulative state derived from at least bandwidth utilization conditions of output ports that were traversed by the packet along a path, from the source node up to the network element, to select a port for forwarding the packet toward the destination node, to update the mark of the packet based at least on a value of the mark in the received packet and on a local bandwidth utilization condition of the selected port, and to transmit the packet having the updated mark to the destination node via the selected port.
Abstract:
A network element one or more network ports, network time circuitry and packet processing circuitry. The network ports are configured to communicate with a communication network. The network time circuitry is configured to track a network time defined in the communication network. In some embodiments the packet processing circuitry is configured to receive a definition of one or more timeslots that are synchronized to the network time, and to send outbound packets to the communication network depending on the timeslots. In some embodiments the packet processing circuitry is configured to process inbound. packets, which are received from the communication network, depending on the timeslots.
Abstract:
A network adapter includes a host interface configured to communicate with a host, a network interface configured to communicate with a communication network, and packet processing circuitry. The packet processing circuitry is configured to receive a packet from the host via the host interface, or from the communication network via the network interface, to receive an indication of a network time used for synchronizing network elements in the communication network, to match the packet to a rule, the rule including a condition and an action, and to perform the action in response to the packet meeting the condition, wherein one or more of (i) the condition in the rule and (ii) the action in the rule, depend on the network time.
Abstract:
A network interface includes a host interface for communicating with a node, and circuitry which is configured to communicate with one or more other nodes over a communication network so as to carry out, jointly with one or more other nodes, a redundant storage operation that includes a redundancy calculation, including performing the redundancy calculation on behalf of the node.
Abstract:
Systems and methods herein are for one or more processing units to be associated with at least one switch or router and to enable the at least one switch or router to receive a communication from a source host machine, where the communication includes a request associated with memory access protocols of a memory space of a destination host machine, and where the communication is to be provided to the destination host machine to enable subsequent communications from the source host machine that are based in part on the memory access protocols received in response to the request.
Abstract:
A device, communication system, and method are provided. In one example, a system for routing traffic is described that includes a plurality of ports to facilitate communication over a network. The system also includes a controller to selectively activate or deactivate ports of the system based on queue depths and additional information to improve power efficiency of the system.
Abstract:
A parsing apparatus includes a packet-type identification circuit and a parser. The packet-type identification circuit is to receive a packet to be parsed, and to identify a packet type of the packet by extracting a packet-type identifier from a defined field in the packet. The parser is to store one or more parsing templates that specify parsing of one or more respective packet types. When the packet type of the packet corresponds to a parsing template among the stored parsing templates, the parser is to parse the packet in accordance with the stored parsing template. When the packet type of the packet does not correspond to any of the stored parsing templates, the parser is to parse the packet using an alternative parsing scheme.
Abstract:
An Integrated Circuit (IC) includes one or more functional hardware circuits, one or more processor cores, a cause-tree circuit, a memory buffer, and an analysis circuit. The processor cores are to handle events occurring in the functional hardware circuits. The cause-tree circuit includes leaf nodes, middle nodes and a root node. The leaf nodes are to collect the events from the one or more functional hardware circuits. The middle nodes are to coalesce the collected events and to deliver the events to the root node. The memory buffer is to buffer a plurality of the events delivered to the root node, so as to trigger the processor cores to handle the buffered events. The buffer analysis circuit is to analyze a performance of the cause-tree circuit based on the events buffered in the memory buffer.
Abstract:
A device, a switch, and a method of determining latency which exceeds a threshold are described. A task is enqueued and a time is determined based on two clocks. A time the task is dequeued is determined based on the two clocks. Based on the time of enqueue and the time of dequeue according to each of the two clocks, the task is identified as meeting or violating a service level agreement.
Abstract:
Switches for performing packet switching and associated methods are provided. An example switch includes an ingress port for receiving a packet. The switch includes a plurality of egress ports for discharging the packet from the switch. The switch includes a plurality of egress queues with each egress queue associated with one of the plurality of egress ports. The switch includes a control plane configured to determine a descriptor associated with a packet, determine a first egress port from which to discharge the at least one packet and to transmit the descriptor to an egress queue associated with the first egress port. The switch includes a descriptor crossbar configured to transmit the descriptor from the egress queue to a second egress port of the plurality of egress ports. The switch includes a packet crossbar configured to transmit the at least one packet from the ingress port to the second egress port.