摘要:
A fabrication process is provided that produces an air gap dielectric in which a multi-level interconnect structure is formed upon a temporary supporting material. The temporary material is subsequently dissolved away leaving behind an intralevel and an interlevel dielectric comprised of air. In one embodiment of the invention, a first interconnect level is formed on a barrier layer. A temporary support material is then formed over the first interconnect level and a second level of interconnect is formed on the temporary support material. Prior to formation of the second interconnect level, a plurality of pillar openings are formed in the temporary material and filled with a conductive material. In addition to providing a contact between the first and second level of interconnects, the pillars provide mechanical support for the second interconnect level. The temporary material is dissolved in a solution that attacks the temporary material but leaves the interconnect material and pillar material intact. In one embodiment of the invention, a passivation layer is formed on the second interconnect level prior to dissolving the temporary material. The air gap dielectric can be used with more than two levels of interconnect, if desired.
摘要:
A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply. The non-operational conductors thereby do not contribute to the integrated circuit functionality other than to provide structural planarity to the overlying interlevel dielectric. The mask derivation process is applicable to either a metal interconnect photolithography mask or a polysilicon interconnect photolithography mask.
摘要:
An improved multilevel interconnect structure is provided. The interconnect structure includes pillars spaced from each other across a wafer. The pillars are placed between levels of interconnect or between an interconnect level and a semiconductor substrate. The pillars are spaced from each other by an air gap, such that each conductor within a level of interconnect is spaced by air from one another. Furthermore, each conductor within one level of interconnect is spaced by air from each conductor within another level of interconnect. Air gaps afford a smaller interlevel and intralevel capacitance within the multilevel interconnect structure, and a smaller parasitic capacitance value affords minimal propagation delay and cross-coupling noise of signals sent through the conductors. The air gaps are formed by dissolving a sacrificial dielectric, and the conductors are prevented from bending or warping in regions removed of sacrificial dielectric by employing anodization on not just the upper surfaces of each conductor, but the sidewalls as well. The upper and sidewall anodization provides a more rigid metal conductor structure than if merely the upper or sidewall surfaces were anodized. Accordingly, the pillars can be spaced further apart and yet provide all necessary support to the overlying conductors.
摘要:
A method for isolating a first active region from a second active region, both of which are configured within a semiconductor substrate. The method comprises forming a trench in the semiconductor substrate between said first active region and said second active region. A first dielectric layer is then formed on said trench and a polysilicon layer is deposited on said first dielectric layer. The polysilicon layer is then thermally oxidized to form a second dielectric layer. Preferably the first dielectric is a thermal oxide 40 to 500 angstroms in thickness consuming less than 200 angstroms of said first active region and said second active region. The polysilicon layer is preferably between 1000 to 2000 angstroms.
摘要:
An isolation technique is provided for improving the overall planarity of trench isolation regions relative to adjacent silicon mesas. The isolation process results in a spaced plurality of silicon risers formed in wide isolation regions. The space between silicon risers are ideally suited for optimal fill of a dielectric deposited across the semiconductor topography, i.e., across and between the silicon risers formed between active areas. The silicon risers, and optimally dimensioned trenches extending between the risers, enhance the planarity of the deposited dielectric. The deposited dielectric upper surface includes recesses of minimal elevational disparity, wherein the recesses are closely spaced in alignment directly above the trenches formed between silicon risers. The recesses can be readily removed by a chemical-mechanical polishing step with minimal deformity to the polishing pad, resulting in global planarization of the dielectric upper surface.
摘要:
An integrated circuit is provided having an improved interconnect structure. The interconnect structure includes a power-coupled local interconnect which is always retained at VDD or VSS (i.e., ground) level. The local interconnect resides a dielectric-spaced distance below critical runs of overlying interconnect. The powered local interconnect serves to sink noise transients from the critical conductors to ensure that circuits connected to the conductors do not inoperably function. Accordingly, the local interconnect extends along a substantial portion of the conductor length, and is either wider or narrower than the conductor under which it extends. The local interconnect can either be polysilicon, doped polysilicon, polycide, refractory metal silicide, or multi-level refractory metal.
摘要:
A multilevel interconnect structure is provided. The multilevel interconnect structure includes two, three or more levels of conductors formed according to at least two exemplary embodiments. According to one embodiment, the contact structure which links conductors on one level to an underlying level is formed by a single via etch step followed by a fill step separate from a fill step used in filling the via. In this embodiment, the via is filled with a conductive material which forms a plug separate from the material used in forming the interconnect. In another exemplary embodiment, the step used in filling the via can be the same as that used in forming the interconnect. In either instance, a via is formed through a first dielectric to underlying conductors. A second dielectric is patterned upon the first dielectric and serves to laterally bound the fill material used in producing the overlying interconnect. Regardless of the process sequence chosen, the interlevel dielectric structure is left substantially planar in readiness for subsequent interconnect levels dielectically deposited thereon.
摘要:
An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. In densely spaced interconnect areas, interposed conductors are drawn to dissimilar elevational levels to lessen the capacitive coupling between the interconnects. By staggering every other interconnect line in the densely patterned areas, the interconnects are capable of carrying a larger amount of current with minimal capacitive coupling therebetween.
摘要:
A reduced permittivity interlevel dielectric in a semiconductor device arranged between two levels of interconnect. The dielectric comprises a first dielectric layer preferably from a silane source deposited on a first level interconnect to form air gaps at midpoints between adjacent first interconnect structures, a second dielectric containing air gap trenches at spaced intervals across the second dielectric, and a third dielectric formed upon said second dielectric. A second interconnect level is formed on the third dielectric.
摘要:
A multilevel interconnect structure is provided. The multilevel interconnect structure includes two, three or more levels of conductors formed according to at least two exemplary embodiments. According to one embodiment, the contact structure which links conductors on one level to an underlying level is formed by a single via etch step followed by a fill step separate from a fill step used in filling the via. In this embodiment, the via is filled with a conductive material which forms a plug separate from the material used in forming the interconnect. In another exemplary embodiment, the step used in filling the via can be the same as that used in forming the interconnect. In either instance, a via is formed through a first dielectric to underlying conductors. A second dielectric is patterned upon the first dielectric and serves to laterally bound the fill material used in producing the overlying interconnect. Regardless of the process sequence chosen, the interlevel dielectric structure is left substantially planar in readiness for subsequent interconnect levels dielectically deposited thereon.