Abstract:
According to embodiments of the present invention, an electrocardiogram signal processing system is provided which includes: a wavelet transformation unit comprising a plurality of outputs, each output being connected to one of a plurality of scales, wherein the wavelet transformation unit is adapted to transform an input electrocardiogram signal into a set of wavelets, each wavelet being output to one of the scales; a plurality of signal processing blocks, each of the signal processing blocks coupled to a respective output of the wavelet transformation unit and configured to receive and process the wavelet from the respective output, wherein the signal processing blocks provide processing functions which differ from one another.
Abstract:
A power management technique in a light emitting diode (LED) system is disclosed. The LED system includes a plurality of LED driver connected in series, each LED driver configured to regulate the current flowing through a corresponding subset of a plurality of LED strings. Each LED driver determines the minimum tail voltage of the LED strings of the corresponding subset, compares the determined minimum tail voltage with an indicator of a minimum tail voltage of one or more other subsets provided from an upstream LED driver in the series, and then provides an indicator of the lower of the two tail voltages to the downstream LED driver. In this manner an indicator of the minimum tail voltage of the plurality of LED strings is cascaded through the series. A feedback controller monitors the minimum tail voltage represented by the cascaded indicator and accordingly adjusts an output voltage provided to the head ends of the plurality of LED strings.
Abstract:
A rework method of a metal hard mask layer is provided. First, a material layer is provided. A dielectric layer, a first metal hard mask layer, and a patterned first dielectric hard mask layer have been sequentially formed on the material layer. There is a defect on a region of the first metal hard mask layer, and therefore the region of the first metal hard mask layer is not able to be patterned. After that, the patterned first dielectric hard mask layer and the first metal hard mask layer are removed. A planarization process is then performed on the dielectric layer. Next, a second metal hard mask layer and a second dielectric hard mask layer are sequentially formed on the dielectric layer.
Abstract:
A rotary die cutter includes a plate cylinder and two bearer members provided at two opposite ends of the plate cylinder. The plate cylinder has a receiving cavity therein and a plurality of annular knife blades formed on an outer cylindrical surface thereof. A plurality of intake ports is defined in the plate cylinder. Each intake port is surrounded by a corresponding knife blade and in communication with the cavity in the plate cylinder. The plate cylinder defines a discharging hole in a periphery wall thereof and in communication with the cavity.
Abstract:
A light emitting diode (LED) system implements a LED driver to drive a set of one or more LED strings. The LED driver includes a voltage source to provide an adjustable output voltage to a head end of each LED string of the set for a first duration and a second duration following the first duration. The LED driver further includes a feedback controller to control the voltage source to adjust the output voltage for the second duration based on a digital code value generated from a minimum tail voltage of one or more tail voltages of the set at a sample point of the first duration. The LED driver further includes a power controller to temporarily enable one or more components of the feedback controller for a sample period of the first duration, the sample period comprising the sample point.
Abstract:
A method of a user interface for red eye removal in a portable device includes displaying a first screen having an image and a first menu. If a user selects a first icon in the first menu, the method further includes displaying a second screen having the image after automatic red eye removal and a second menu. If the user selects a second icon in the second menu, the method further includes redisplaying the second screen having the image prior to automatic red eye removal. If the user selects a third icon in the second menu, the method further includes displaying a third screen having the image, a visual indicator for the location of manual red eye removal, and a third menu. If the user selects a fourth icon in the third menu, the method further includes redisplaying the second screen with the image after manual red eye removal.
Abstract:
The present invention discloses novel influenza virus-like particles (VLPs) that contain chimeric proteins or influenza membrane proteins. The chimeric proteins are derived from fragments of influenza membrane proteins fused to heterologous proteins. The invention includes antigenic formulations and vaccines comprising VLPs of the invention as well as methods of making and administering VLPs to vertebrates, including methods of inducing immunity to infections, such as influenza.
Abstract:
Method for selective fabrication of high capacitance density areas in a low dielectric constant material and related structure are disclosed. In one embodiment, a first area of a dielectric layer is covered, for example with photoresist, while a second area of the dielectric layer is exposed to a dielectric conversion source such as E-beams, I-beams, oxygen plasma, or an appropriate chemical. The exposure causes the dielectric constant of the dielectric layer in the second area to increase. A number of capacitor trenches are etched in the second area of the dielectric. The capacitor trenches are then filled with an appropriate metal, such as copper, and a chemical mechanical polish is performed. The second area in which the capacitor trenches have been etched and filled has a higher capacitance density relative to the first area. In another embodiment, the exposure to the dielectric conversion source is not performed until after the chemical mechanical polish has been performed. In yet another embodiment, a blanket layer of metal, such as aluminum, is first deposited. The blanket layer of metal is then etched to form metal lines. Then a gap fill dielectric is utilized to fill the gaps between the remaining metal lines. A first area of the gap fill dielectric is then covered and a second area of the gap fill dielectric is exposed to a dielectric conversion source. After exposure to the dielectric conversion source, the dielectric constant of the gap fill dielectric in the second area increases. The metal lines in the second area can then be used as capacitor electrodes of a high density capacitor.
Abstract:
A method of a user interface for red eye removal in a portable device includes displaying a first screen having an image and a first menu. If a user selects a first icon in the first menu, the method further includes displaying a second screen having the image after automatic red eye removal and a second menu. If the user selects a second icon in the second menu, the method further includes redisplaying the second screen having the image prior to automatic red eye removal. If the user selects a third icon in the second menu, the method further includes displaying a third screen having the image, a visual indicator for the location of manual red eye removal, and a third menu. If the user selects a fourth icon in the third menu, the method further includes redisplaying the second screen with the image after manual red eye removal.
Abstract:
An interconnect structure and fabrication method are provided to form air gaps between interconnect lines and between interconnect layers. A conductive material is deposited and patterned to form a first level of interconnect lines. A first dielectric layer is deposited over the first level of interconnect lines. One or more air gaps are formed in the first dielectric layer to reduce inter-layer capacitance, intra-layer capacitance or both inter-layer and intra-layer capacitance. At least one support pillar remains in the first dielectric layer to promote mechanical strength and thermal conductivity. A sealing layer is deposited over the first insulative layer to seal the air gaps. Via holes are patterned and etched through the sealing layer and the first dielectric layer. A conductive material is deposited to fill the via holes and form conductive plugs therein. Thereafter, a conductive material is deposited and patterned to form a second level of interconnect lines.