摘要:
A semiconductor device may include a plurality of wiring structures spaced apart from each other, a protection pattern including a metal nitride on each of the wiring structures, a spacer on a sidewall of the protection pattern, and an insulating interlayer structure containing the wiring structures and having an air gap between the wiring structures.
摘要:
Embodiments of the present disclosure are directed towards techniques and configurations for layered interconnect structures for bridge interconnection in integrated circuit assemblies. In one embodiment, an apparatus may include a substrate and a bridge embedded in the substrate. The bridge may be configured to route electrical signals between two dies. An interconnect structure, electrically coupled with the bridge, may include a via structure including a first conductive material, a barrier layer including a second conductive material disposed on the via structure, and a solderable material including a third conductive material disposed on the barrier layer. The first conductive material, the second conductive material, and the third conductive material may have different chemical composition. Other embodiments may be described and/or claimed.
摘要:
A color-conversion structure includes an article comprising a color-conversion material disposed within a color-conversion layer. At least a portion of a tether is within or extends from the article. The color-conversion structure can be disposed over a sacrificial portion of a substrate to form a micro-transfer printable device and micro-transfer printed to a display substrate. The color-conversion structure can include an light-emitting diode or laser diode that is over or under the article. Alternatively, the article is located on a side of a display substrate opposite an inorganic light-emitting diode. A display includes an array of color-conversion structures disposed on a display substrate.
摘要:
Embodiments of the present disclosure are directed towards techniques and configurations for a bridge interconnect assembly that can be embedded in a package assembly. In one embodiment, a package assembly includes a package substrate configured to route electrical signals between a first die and a second die and a bridge embedded in the package substrate and configured to route the electrical signals between the first die and the second die, the bridge including a bridge substrate, one or more through-hole vias (THVs) formed through the bridge substrate, and one or more traces disposed on a surface of the bridge substrate to route the electrical signals between the first die and the second die. Routing features including traces and a ground plane of the bridge interconnect assembly may be separated by an air gap. Other embodiments may be described and/or claimed.
摘要:
Circuit fabrication uses a multilevel mask to pattern a first conductor layer of a multilayer circuit. The first conductor patterning is to provide electrical isolation between the first conductor layer and a second conductor layer that one of overlies the multilevel mask and underlies the multilevel mask. With the second conductor layer overlying the multilevel mask, the electrical isolation is provided by undercutting the multilevel mask. Alternatively, with the second conductor underlying the multilevel mask, the first conductor includes a bridged gapped conductor and the electrical isolation may be provided by both the bridged gapped conductor and an insulating layer between the second conductor layer and the first conductor layer.
摘要:
The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 μm to 50 μm), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
摘要:
The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 μm to 50 μm), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
摘要:
In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.
摘要:
A method is provided of forming an interconnect structure. The method comprises forming a first dielectric layer overlying a first conductive layer, etching a trench opening in the first dielectric layer, depositing a sacrificial material layer in the trench opening, and forming a second conductive layer overlying the sacrificial layer. The method also comprises forming a via to the sacrificial layer, and performing an etch to remove the sacrificial material layer through the via and leave a resultant air gap between the first conductive layer and the second conductive layer decreasing the effective dielectric constant between the first and second conductive layers.
摘要:
A substrate having an air bridge structure with end portions disposed and supported on the substrate and an elevated portion disposed between the end portions is coated with a protective layer. The protective layer is patterned to: leave portions of the protective layer over elevated portion and at least over the end portions of a region under the elevated portion of the air bridge structure; and remove portions over adjacent portions of the substrate. A dielectric material having a thickness greater than the height of the air bridge structure is deposited over the patterned protective layer portions remaining over elevated portion and over the adjacent portions of the substrate, the patterned temporary coating preventing the to dielectric material from passing into the region under the elevated portion of the air bridge structure. The dielectric material is patterned to remove portions of the dielectric material over the patterned protective layer remaining over elevated portion while leaving the dielectric material over the adjacent portions of the substrate. The patterned protective layer portions remaining over elevated portion are removed while leaving the dielectric material over the adjacent portions of the substrate.