Abstract:
The present invention discloses an X-ray beam intensity monitoring device and an X-ray inspection system. The X-ray beam intensity monitoring device comprises an intensity detecting module and a data processing module, wherein the intensity detecting module is adopted to be irradiated by the X-ray beam and send a detecting signal, the data processing module is coupled with the intensity detecting module to receive the detecting signal and output an X-ray beam intensity monitoring signal, wherein the X-ray beam intensity monitoring signal includes a dose monitoring signal of the X-ray beam and a brightness correction signal of the X-ray beam. The X-ray beam intensity monitoring device can simultaneously perform dose monitoring and brightness monitoring, thereby improving the service efficiency of the X-ray beam intensity monitoring device. Moreover, the monitoring result of the X-ray beam intensity can be more accurate and reliable.
Abstract:
A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
Abstract:
The present disclosure relates to a fluoroscopic inspection system for automatic classification and recognition of cargoes. The system includes: an image data acquiring unit, configured to perform scanning and imaging for a container by using an X-ray scanning device to acquire a scanned image; an image segmenting unit, configured to segment the scanned image into small regions each having similar gray scales and texture features; a feature extracting unit, configured to extract features of the small regions; a training unit, configured to generate a classifier according to annotated images; and a classification and recognition unit, configured to recognize the small regions by using the classifier according to the extracted features, to obtain a probability of each small region pertaining to a certain category of cargoes, and merge small regions to obtain large regions each representing a category.
Abstract:
The present invention discloses a general sample injector, comprising a sample injection port mechanism, a sample injector shell, a vaporizing chamber, a heater, a temperature control unit, a carrier gas channel, a septum purge channel, a flow splitting channel, a coolant channel, a multichannel flow control valve and a temperature control unit. The general sample injector, equivalent to a “programmed temperature vaporizer” injector combining splitting/no splitting with cold column head sample injection, gives full play to the advantages of various sample injection modes, overcomes a plurality of disadvantages, and has higher practicability and better flexibility.
Abstract:
The X-ray fluoroscopic imaging system of the present invention comprises: an inspection passage; an electron accelerator; a shielding collimator apparatus comprising a shielding structure, and a first collimator for extracting a low energy planar sector X-ray beam and a second collimator for extracting a high energy planar sector X-ray beam which are disposed within the shielding structure; a low energy detector array for receiving the X-ray beam from the first collimator; and a high energy detector array for receiving the X-ray beam from the second collimator. The first collimator, the low energy detector array and the target point bombarded by the electron beam are located in a first plane; and the second collimator, the high energy detector array and the target point bombarded by the electron beam are located in a second plane.
Abstract:
A ray generating device and a control method thereof are provided. The ray generating device includes: an electronic beam generating device; a microwave generating device; a microwave circulator, having a power input port and at least two power output ports, the power input port being connected to the microwave generating device; a plurality of accelerating tubes respectively connected to at least two power output ports, configured to respectively receive a plurality of electronic beams, and accelerate electronic beams respectively through microwaves received from the at least two power output ports, and to respectively generate a plurality of rays having at least two different energies; and a controller, configured to perform chronological control on microwave power of the microwave generating device, and chronological control on beam loadings of the electronic beams generated by the electronic beam generating device and respectively corresponding to accelerating tubes.
Abstract:
The present disclosure relates to an article inspection system and method, an electronic device, and a storage medium, and relates to the field of security inspection technology. The system includes: a pre-concentration sampling module configured to concentrate and sample gas molecule of the article under inspection to obtain a sample; a gas chromatography module; an internal circulation gas path module; and an ion migration tube module connected to the internal circulation gas path module and configured to form a fingerprint spectrum of the article under inspection from a spectrum of the pre-separated sample molecules, so as to identify a kind of the article under inspection according to the fingerprint spectrum. The present disclosure improves the efficiency and accuracy of article inspection, and realizes intelligent inspection of articles.
Abstract:
A gas path flow monitoring apparatus for an ion mobility spectrometer includes: an ion migration tube, a sensor group, and monitoring device. The ion migration tube has a drift gas inlet, a carrier gas inlet for a sample gas, and an exhaust outlet. The sensor group comprises a drift gas intake quantity sensor connected to the drift gas inlet, a carrier gas intake quantity sensor connected to the carrier gas inlet, and an exhaust quantity sensor connected to the exhaust outlet. The monitoring device is connected to the sensor group to monitor a drift gas intake quantity sensed by the drift gas intake quantity sensor, a carrier gas intake quantity sensed by the carrier gas intake quantity sensor, and an exhaust quantity sensed by the exhaust quantity sensor.
Abstract:
The present disclosure provides a spiral Computed Tomography (CT) device and a three-dimensional image reconstruction method. The spiral CT device includes: an inspection station configured to carry an object to be inspected, the inspection station defining an inspection space which is located above the inspection station and is used for accommodating the object to be inspected; a rotational supporting apparatus which is disposed around the inspection space in a plane parallel to a first direction and is rotatable around the inspection space in a detection state; a plurality of X-ray sources located on the rotational supporting apparatus and configured to transmit X-rays to pass through the inspection space; and a plurality of X-ray receiving apparatuses in one-to-one correspondence to the plurality of X-ray sources, the plurality of X-ray receiving apparatuses being located on the rotational supporting apparatus opposite to the plurality of X-ray sources respectively and configured to collect the X-rays passing through the inspection space, wherein the plurality of X-ray sources and the plurality of X-ray receiving apparatuses are rotational synchronously with the rotational supporting apparatus.
Abstract:
A gas chromatography-ion mobility spectrometry detector and a hyphenated apparatus, the gas chromatography-ion mobility spectrometry detector comprises a gas chromatography mechanism and an ion mobility spectrometry mechanism. The gas chromatography mechanism comprises a chromatographic column and a sample injection port. The ion mobility spectrometry mechanism comprises a mobility tube and a connecting body, while a metal connection plate of the connecting body comprises a chromatographic metal plate, an ion mobility metal plate and a semipermeable membrane; on the ion mobility metal plate there are provided an ion mobility sample and carrier gas inlet, an ion mobility sample chamber and a sample injection port; the chromatography sample chamber and the ion mobility sample chamber are separated by semipermeable membrane.