摘要:
The present invention discloses a corona discharge assembly, including: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and an annular piece-shaped port which forms a non-uniform electric field with corona pins and is provided with a circular hole at the middle; a rotating shaft is installed on the cylinder wall of the metal corona cylinder in an insulating manner, the rotating shaft is vertical to the axial line of the metal corona cylinder, and a turntable provided with multiple corona pins at the outer edge is installed at the end part of the rotating shaft the axial line of the metal corona cylinder passes in parallel through the rotation plane of the turntable. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly.
摘要:
The present disclosure is directed to a low cost sintering process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics, comprising uniaxial hot pressing primary sintering and hot isostatic pressing secondary sintering.
摘要翻译:本公开涉及用于制备具有通式Gd 2 O 2 S(称为GOS,闪烁陶瓷)的钆硫氧化物的低成本烧结方法,其包括单轴热压一次烧结和热等静压二次烧结。
摘要:
the present invention provides a method for forming a sensitive film for neutron detection, wherein the sensitive film is formed by electrophoresis coating, the liquid used for electrophoresis coating includes neutron sensitive material, electrophoresis paint and deionized water, and the neutron sensitive material is 10B single substance, 10B compound or mixture containing 10B. The sensitive film for neutron detection has the high detection efficiency because of the high content of 10B. The sensitive film for neutron detection has the uniform and stable film thickness, and excellent consistency. The production efficiency and the cost of the sensitive film are improved.
摘要:
The present disclosure is directed to a rapid process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics by using the combination of spark plasma primary sintering (SPS) and hot isostatic pressing secondary sintering.
摘要翻译:本公开涉及通过使用火花等离子体一次烧结(SPS)和热等静压二次烧结的组合制备具有通式Gd 2 O 2 S(称为GOS)闪烁陶瓷的通式Gd 2 O 2 S的快速方法。
摘要:
A GC-IMS system is disclosed in embodiments of the present invention. The system comprises a sample transfer device. The sample transfer device connects the gas chromatograph to the reaction region and, the sample from the gas chromatograph is transferred to the reaction region by the sample transfer device directly, instead of not through the ionization region. With the GC-IMS system, generation of sample molecular ion fragments can be avoided so that the spectrum is brevity and is easily identified; moreover, the application field of the GC-IMS system is extended to a range of analysis of organic macromolecule samples which have a high polarity, are difficult to volatilize, and are thermally instable. On the other hand, the GC-IMS system overcomes the defect of ion destruction due to neutralization reaction among positive and negative ions so as to evade the detection.
摘要:
A mold and a method of manufacturing GOS ceramic scintillator by using the mold are provided. The mold comprises: a female outer sleeve having a cavity disposed inside; a plurality of female blocks disposed inside the cavity, the plurality of female blocks being put together to form a composite structure having a vertical through hole; and a male upper pressing head and a male lower pressing head, wherein each of the male upper pressing head and the male lower pressing head has a shape consistent with that of the vertical through hole. The disclosure may reduce defects of the related art in hot-pressing-sintering such as a mold has a short retirement period and a high material waste, significantly reduce the cost for production of the GOS ceramic scintillator, and significantly improve a process economy.
摘要:
A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
摘要:
The present invention discloses a general sample injector, comprising a sample injection port mechanism, a sample injector shell, a vaporizing chamber, a heater, a temperature control unit, a carrier gas channel, a septum purge channel, a flow splitting channel, a coolant channel, a multichannel flow control valve and a temperature control unit. The general sample injector, equivalent to a “programmed temperature vaporizer” injector combining splitting/no splitting with cold column head sample injection, gives full play to the advantages of various sample injection modes, overcomes a plurality of disadvantages, and has higher practicability and better flexibility.