摘要:
A method of forming capacitors includes forming support material over a substrate. A first capacitor electrode is formed within individual openings in the support material. A first etching is conducted only partially into the support material using a liquid etching fluid to expose an elevationally outer portion of sidewalls of individual of the first capacitor electrodes. A second etching is conducted into the support material using a dry etching fluid to expose an elevationally inner portion of the sidewalls of the individual first capacitor electrodes. A capacitor dielectric is formed over the outer and inner portions of the sidewalls of the first capacitor electrodes. A second capacitor electrode is formed over the capacitor dielectric.
摘要:
Methods and etchant compositions for wet etching to selectively remove a hafnium aluminum oxide (HfAlOx) material relative to silicon oxide (SiOx) are provided.
摘要:
A transistor gate forming method includes forming a metal layer within a line opening and forming a fill layer within the opening over the metal layer. The fill layer is substantially selectively etchable with respect to the metal layer. A transistor structure includes a line opening, a dielectric layer within the opening, a metal layer over the dielectric layer within the opening, and a fill layer over the metal layer within the opening. The metal layer/fill layer combination exhibits less intrinsic less than would otherwise exist if the fill layer were replaced by an increased thickness of the metal layer. The inventions apply at least to 3-D transistor structures.
摘要:
The invention includes methods of etching nickel silicide and cobalt silicide, and methods of forming conductive lines. In one implementation, a substrate comprising nickel silicide is exposed to a fluid comprising H3PO4 and H2O at a temperature of at least 50° C. and at a pressure from 350 Torr to 1100 Torr effective to etch nickel silicide from the substrate. In one implementation, at least one of nickel silicide or cobalt silicide is exposed to a fluid comprising H2SO4, H2O2, H2O, and HF at a temperature of at least 50° C. and at a pressure from 350 Torr to 1100 Torr effective to etch the at least one of nickel silicide or cobalt silicide from the substrate.
摘要翻译:本发明包括蚀刻硅化镍和硅化钴的方法,以及形成导电线的方法。 在一个实施方案中,将包含硅化镍的衬底暴露于包含H 3 PO 3 H 2 O 2和H 2 O 2的流体至少 50°C和350 Torr至1100 Torr的压力有效地从衬底上蚀刻硅化镍。 在一个实施方案中,将硅化镍或硅化钴中的至少一种暴露于包含H 2 SO 4 H 2 O 3,H 2 O > 2 2> H 2 O和HF在至少50℃的温度和350托至1100托的压力下有效地蚀刻至少一种硅化镍 或硅化钴。
摘要:
A method of forming a hydrophobic surface on a semiconductor device structure. The method comprises forming at least one structure having at least one exposed surface comprising titanium atoms. The at least one exposed surface of at least one structure is contacted with at least one of an organo-phosphonic acid and an organo-phosphoric acid to form a material having a hydrophobic surface on the at least one exposed surface of the least one structure. A method of forming a semiconductor device structure and a semiconductor device structure are also described.
摘要:
The invention includes methods in which silicon is removed from titanium-containing container structures with an etching composition having a phosphorus-and-oxygen-containing compound therein. The etching composition can, for example, include one or both of ammonium hydroxide and tetra-methyl ammonium hydroxide. The invention also includes methods in which titanium-containing whiskers are removed from between titanium-containing capacitor electrodes. Such removal can be, for example, accomplished with an etch utilizing one or more of hydrofluoric acid, ammonium fluoride, nitric acid and hydrogen peroxide.
摘要:
A transistor gate forming method includes forming a metal layer within a line opening and forming a fill layer within the opening over the metal layer. The fill layer is substantially selectively etchable with respect to the metal layer. A transistor structure includes a line opening, a dielectric layer within the opening, a metal layer over the dielectric layer within the opening, and a fill layer over the metal layer within the opening. The metal layer/fill layer combination exhibits less intrinsic less than would otherwise exist if the fill layer were replaced by an increased thickness of the metal layer. The inventions apply at least to 3-D transistor structures.
摘要:
Methods and etchant compositions for wet etching to selectively remove a hafnium aluminum oxide (HfAlOx) material relative to silicon oxide (SiOx) are provided.
摘要:
Methods of selectively forming a metal-doped chalcogenide material comprise exposing a chalcogenide material to a transition metal solution, and incorporating transition metal of the transition solution into the chalcogenide material without substantially incorporating the transition metal into an adjacent material. The chalcogenide material is not silver selenide. Another method comprises forming a chalcogenide material adjacent to and in contact with an insulative material, exposing the chalcogenide material and the insulative material to a transition metal solution, and diffusing transition metal of the transition metal solution into the chalcogenide material while substantially no transition metal diffuses into the insulative material. A method of doping a chalcogenide material of a memory cell with at least one transition metal without using an etch or chemical mechanical planarization process to remove the transition metal from an insulative material of the memory cell is also disclosed, wherein the chalcogenide material is not silver selenide.
摘要:
The invention includes methods in which silicon is removed from titanium-containing container structures with an etching composition having a phosphorus-and-oxygen-containing compound therein. The etching composition can, for example, include one or both of ammonium hydroxide and tetra-methyl ammonium hydroxide. The invention also includes methods in which titanium-containing whiskers are removed from between titanium-containing capacitor electrodes. Such removal can be, for example, accomplished with an etch utilizing one or more of hydrofluoric acid, ammonium fluoride, nitric acid and hydrogen peroxide.