摘要:
A method of fabricating an integrated circuit can include forming a barrier material layer along lateral side walls and a bottom of a via aperture which is configured to receive a via material that electrically connects a first conductive layer and a second conductive layer, implanting a first alloy element into an interfacial layer over the barrier material layer, depositing an alloy layer over the interfacial layer. The implanted first alloy element is reactive with the barrier material layer to increase resistance to copper diffusion.
摘要:
A method of implanting copper barrier material to improve electrical performance in an integrated circuit fabrication process can include providing a copper layer over an integrated circuit substrate, providing a barrier material at a bottom and sides of a via positioned over the copper layer to form a barrier material layer separating the via from the copper layer, implanting a metal species into the barrier material layer, and providing a conductive layer over the via such that the via electrically connects the conductive layer to the copper layer. The implanted metal species can make the barrier material layer more resistant to copper diffusion from the copper layer.
摘要:
A method of fabricating an integrated circuit can include forming a barrier material layer along lateral side walls and a bottom of a via aperture which is configured to receive a via material that electrically connects a first conductive layer and a second conductive layer, implanting a first alloy element into the barrier material layer, and implanting a second alloy element after deposition of the via material. The implanted first alloy element makes the barrier material layer more resistant to copper diffusion. The implanted second alloy element diffuses to a top interface of the via material and reduces bulk diffusion from the via material.
摘要:
One aspect of the present invention relates to a method of making a test mask, involving the steps of providing an existing product mask pattern having a first pattern thereon; removing a portion of the first pattern from the existing product mask pattern; and forming a test pattern in the portion of the existing product mask pattern to provide the test mask, wherein the first pattern of the existing product mask pattern is substantially similar in at least one of pattern density, pattern variability, pattern size, pattern shape, preferential direction, and pattern scribe with the test pattern. Another aspect of the present invention relates to a test mask, containing a wall paper portion comprising a first pattern from an existing product mask pattern; and a test portion comprising a test pattern, wherein the first pattern of the existing product mask pattern is substantially similar in at least one of pattern density, pattern variability, pattern size, pattern shape, preferential direction, and pattern scribe with the test pattern.
摘要:
A field effect transistor (FET) is formed on a silicon on insulator (SOI) substrate in the thin silicon layer above the insulating buried oxide layer. The channel region is lightly doped with a first impurity to increase free carrier conductivity of a first type. The source region and the drain region are heavily dopes with the first impurity. A gate and a back gate are positioned along the side of the channel region and extending from the source region and is implanted with a second semiconductor with an energy gap greater than silicon and is implanted with an impurity to increase free carrier flow of a second type.
摘要:
A method for preventing the thermal decomposition of a high-K dielectric layer of a gate electrode during the formation of a metal silicide on the gate electrode by using nickel as the metal component of the silicide.
摘要:
A field effect transistor (FET) is formed on a silicon on insulator (SOI) substrate in the thin silicon layer above the insulating buried oxide layer. The channel region is lightly doped with a first impurity to increase free carrier conductivity of a first type. The source region and the drain region are heavily dopes with the first impurity. A gate and a back gate are positioned along the side of the channel region and extending from the source region and is implanted with a second semiconductor with an energy gap greater than silicon and is implanted with an impurity to increase free carrier flow of a second type.
摘要:
Multi-level semiconductor devices are formed with reduced parasitic capacitance without sacrificing structural integrity or electromigration performance by removing the inter-layer dielectrics and depositing a metal silicide to line the interconnection system. Embodiments include a semiconductor device comprising a dielectric sealing layer, e.g., silicon nitride, between the substrate and first patterned metal layer, tungsten silicide lining the interconnection system and dielectric protective layers, e.g., a silane derived oxide bottommost protective layer, on the uppermost metallization level.
摘要:
A semiconductor structure and method for making the same provides a metal gate on a silicon substrate. The gate includes a high dielectric constant on the substrate, and a physical vapor deposited (PVD) layer of amorphous silicon on the high k gate dielectric. The metal is then formed on the PVD amorphous silicon layer. Additional dopants are implanted into the PVD amorphous silicon layer. An annealing process forms silicide in the gate, with a layer of silicon remaining unreacted. The work function of the metal gate is substantially the same as a polysilicon gate due to the presence of the PVD amorphous silicon layer, while the additional doping of the PVD amorphous silicon layer lowers the resistivity of the gate electrode.
摘要:
A method of making a semiconductor device and a method of isolation of active islands on a silicon-on-insulator semiconductor device, comprising the steps of providing a silicon-on-insulator semiconductor wafer having a silicon active layer, a dielectric isolation layer and a silicon substrate, in which the silicon active layer is formed on the dielectric isolation layer and the dielectric isolation layer is formed on the silicon substrate; forming an isolation trench, the isolation trench defining an active island in the silicon active layer; rounding at least one corner in the active island by application of a high RF bias power high density plasma; and filling the isolation trench with a dielectric trench isolation material by application of a low RF bias power high density plasma. In one embodiment, the rounding step comprises application of a HDP under etching conditions, and the filling step comprises application of a HDP under deposition conditions.