Abstract:
An optical light scanning probe is presented, the probe comprising a handle, shaped for grasping by a user; a cannula, protruding from a distal portion of the handle with an outer diameter smaller than 20 gauge; an optical fiber with a distal fiber-portion off a probe-axis, configured to receive a light from a light-source at a proximal fiber-portion, and to emit the received light at the distal fiber-portion; a fixed beam forming unit, disposed at a distal portion of the cannula, configured to receive the light from the distal fiber-portion, and to deflect the received light toward a target region; and a fiber actuator, housed at least partially in the handle, configured to move the distal fiber-portion to scan the deflected light along a scanning curve in the target region.
Abstract:
Apparatuses, systems, and methods for treating tissue abnormalities are disclosed. The tissue may be visualized for determining a presence of one or more abnormalities contained therein. Imaging data obtained by visualization may be used to determine the presence of one or more abnormalities. Each of the detected abnormalities may be identified and a treatment plan developed for treating the abnormalities. Treatment may be delivered to the abnormalities according to the treatment plan.
Abstract:
A Slit-lamp-or-Microscope-Integrated-OCT-Refractometer system includes an eye-visualization system, configured to provide a visual image of an imaged region in an eye; an Optical Coherence Tomographic (OCT) imaging system, configured to generate an OCT image of the imaged region; a refractometer, configured to generate a refractive mapping of the imaged region; and an analyzer, configured to determine refractive characteristics of the eye based on the OCT image and the refractive mapping, wherein the refractometer and the OCT imaging system are integrated into the eye visualization system.
Abstract:
An optical coherence tomography (OCT) apparatus includes an optical source module comprising two or more selectable optical sources or an optical source configured to selectively operate in two or more source operating modes, or a combination of both, and further comprises an OCT engine coupled to the optical source module, the OCT engine comprising an OCT interferometer. The OCT apparatus still further includes a mode-switching optics module coupled to the OCT engine and comprising one or more swappable, selectable, or adjustable optical components, such that the mode-switching optics module is configured to selectively provide two or more optical configurations for the optical path between the OCT engine and an imaged object, according to two or more corresponding operating modes.
Abstract:
A system and method for a reconfigurable surgical microscope is disclosed. The reconfigurable microscope includes an eyepiece; a relay lens system optically coupled to the eyepiece; a zoom lens system optically coupled to the eyepiece and the relay lens system; an illumination unit; and an objective lens capable of being repositioned between a first objective lens position and a second objective lens position, the first objective lens position comprising a slot located between the zoom lens system and the illumination unit and the second objective lens position comprising a slot located such that the illumination unit is located between the second objective lens position and the zoom lens system.
Abstract:
An optical coherence tomography (OCT) system and method for scanning a defined area according to a pre-set or user-specified scanning pattern, the defined area surrounding a specified starting position or offset from the starting position. Such OCT systems and methods may be used to generate a pictorial representation of internal target structures the OCT sample beam passed through.
Abstract:
Methods, devices, and systems for determining an orientation of a surgical tool during ophthalmic surgery are disclosed. An example method includes performing an optical imaging scan in the surgical site, using a scan pattern that intersects the surgical tool and generating a scan image from the optical imaging scan. The example method further comprises analyzing the scan image to determine a location in the scan image corresponding to where the surgical tool intersected the optical imaging scan, and determining an orientation of the surgical tool, based on the determined location.
Abstract:
A surgical imaging system can include at least one light source, configured to generate a light beam; a beam guidance system, configured to guide the light beam from the light source; a beam scanner, configured to receive the light from the beam guidance system, and to generate a scanned light beam; a beam coupler, configured to redirect the scanned light beam; and a wide field of view (WFOV) lens, configured to guide the redirected scanned light beam into a target region of a procedure eye; wherein the beam coupler is movably positioned relative to the procedure eye such that the beam coupler is selectively movable to change at least one of an incidence angle of the redirected scanned light beam into the procedure eye and the target region of the procedure eye.
Abstract:
Systems, apparatuses, and methods of and for an ophthalmic visualization system are disclosed. An example ophthalmic visualization system may include a first lens positioned relative to a surgical microscope in a manner facilitating viewing of a central region of a retina through the surgical microscope during a surgical procedure. The first lens may be positionable in an optical path between an eye and the surgical microscope during the surgical procedure. The example ophthalmic visualization system may also include a second lens selectively positionable relative to the surgical microscope and the first lens in a manner facilitating viewing of a peripheral region of the retina of the eye during the surgical procedure. The second lens may be selectively positionable in the optical path such that the peripheral region is selectively viewable without changing the position of the first lens during the surgical procedure.
Abstract:
A system and method for a reconfigurable surgical microscope is disclosed. The reconfigurable microscope includes an eyepiece; a relay lens system optically coupled to the eyepiece; a zoom lens system optically coupled to the eyepiece and the relay lens system; an illumination unit; and an objective lens capable of being repositioned between a first objective lens position and a second objective lens position, the first objective lens position comprising a slot located between the zoom lens system and the illumination unit and the second objective lens position comprising a slot located such that the illumination unit is located between the second objective lens position and the zoom lens system.