摘要:
This invention relates to a propylene polymer comprising a component having a crystallinity of 10% or less and a component having a crystallinity of 20% or more, said propylene polymer having: a) a melting point of X ° C. or more where X=−0.0038(Tp)2+0.36(Tp)+150, where Tp is the temperature of polymerization in ° C.; b) an Mw of 10,000 g/mol or more; c) a heat of fusion of from 1-70 J/g; d) Stereodefects per 10,000 monomer units of Y or less where Y=2.35(Tp)−100 (where Tp is the temperature of polymerization in ° C.) for the portion of the blend that is insoluble in hexane at 23° C.; e) a dot T-Peel on Kraft paper of 1 N or more; and f) a branching factor of 0.98 or less, where the branching factor is the ratio of g′ measured at Mz to g′ measured at Mw, and process to produce such polymers.
摘要:
Disclosed herein is an adhesive composition comprising a blend functionalized with a functional group, wherein the blend comprises a C3 to C40 olefin polymer and an additive, the C3 to C40 olefin polymer comprising at least 50 mol % of one or more C3 to C40 olefins, and where the C3 to C40 olefin polymer has: a Dot T-Peel of 1 Newton or more on Kraft paper; an Mw of 10,000 to 100,000; and a branching index (g′) of 0.98 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 60,000, or a branching index (g′) of 0.95 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 100,000. A process of producing the adhesive composition, as well as methods of utilizing the adhesive composition are also disclosed.
摘要:
The present invention also discloses a homogeneous blend composition comprising; a) from 1% to 99% by weight of the blend of a first polymer component comprising a copolymer of 5% to 35% by weight of the first polymer component consisting predominantly of alpha olefin derived units and 65% to 95% by weight of the first polymer component of propylene derived units having a crystallinity of 0.1% to about 25% from isotactic polypropylene sequences, a melting point of from 45° C. to 105° C., and wherein the Melt Flow Rate (MFR @ 230° C.) of the first polymer component is between 300 g/10 min to 5000 g/10 min. b) from 1% to 99% by weight of the blend of a second polymer component comprising isotactic polypropylene and random copolymers of isotactic propylene, wherein the percentage of the copolymerized alpha-olefin in the copolymer is between 0.0% and 9% by weight of the second polymer component and wherein the second polymer component has a melting point greater than about 110° C., wherein the first polymer component has less than 1000 ppm of reaction products arising from the chemical reaction of a molecular degradation agent.
摘要:
This invention relates to an isotactic propylene homopolymer having: more than 15 and less than 100 regio defects (sum of 2,1-erythro and 2,1-threo insertions and 3,1-isomerizations) per 10,000 propylene units; an Mw of 35000 g/mol or more; a peak melting temperature of greater than 149° C.; an mmmm pentad fraction of 0.85 or more; a heat of fusion of 80 J/g or more; and a peak melting temperature minus peak crystallization temperature (Tmp−Tcp) of less than or equal to (0.907 times Tmp) minus 99.64 (Tmp−Tcp
摘要:
This invention relates to processes for preparing polyolefins in the presence of a perfluorocarbon or hydrofluorocarbon with an activated, nonmetallocene, metal-centered, heteroaryl ligand catalyst.
摘要:
The present invention relates to a process for preparing a thermoplastic vulcanizate (TPV) comprising: contacting a thermoplastic polymer, a cross-linkable elastomer, at least one curative, and at least one cure activator in a solvent to form Composition A. The solvent is then removed, and thereafter the cross-linkable elastomer is at least partially cured. The average particle size of the cross-linkable elastomer is 10 microns or less after the solvent is removed.
摘要:
This invention is directed to processes of making polymer in the presence of a fluorinated hydrocarbon and recovering the polymer. The processes provided enable polymerization processes to be practiced with minimal fouling in the reaction system, and allows for the recovery of the fluorinated hydrocarbon and other hydrocarbons such as hydrocarbons for reuse in the process or hydrocarbon by-products from the polymerization process. The invention is particularly beneficial in the production of propylene based polymers using Ziegler Natta catalyst systems.
摘要:
In a process for producing a polymer blend, at least one first monomer is polymerized in a first slurry phase reaction zone in the presence of a supported first catalyst comprising a Ziegler-Natta component to produce a thermoplastic first polymer having a crystallinity of at least 30%. At least part of said first polymer is then contacted with at least one second monomer different from said first monomer and at least one polyene in a second solution phase reaction zone in the presence of a second catalyst under conditions to produce and at least partially cross-link said second polymer such that said second polymer comprises at least a fraction which is insoluble in xylene and has a crystallinity of less than 20%.
摘要:
A heterogeneous polymer blend comprises a dispersed phase comprising a thermoplastic first polymer having a crystallinity of at least 30% and a continuous phase comprising a second polymer different from the first polymer. The second polymer has a crystallinity of less than 20% and is at least partially cross-linked.
摘要:
This invention relates to a polyalpha-olefin (and hydrogenated analogs thereof) comprising more than 50 mole % of one or more C5 to C24 alpha-olefin monomers where the polyalpha-olefin has: a) 40 mole % or more of mm triads, b) a Bromine number of Y or greater, where Y is equal to 89.92*(V)′°5863, where V is the Kinematic Viscosity of the polyalpha-olefin measured at 100° C. in cSt, and c) 1,2 disubstituted olefins present at 7 mole % or more, preferably having Z mole % or more of units represented by the formula: where j, k and m are each, independently, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22, n is an integer from 1 to 350, and where Z=8.420*Log(V)−4.048, where V is the kinematic viscosity of the polyalpha-olefin measured at 1000 C in cSt This invention also relates to process to produce such polyalpha-olefins.