Abstract:
An optical navigation method includes: detecting inertia of an image of a feature point; and determining an effective sensing region of an image sensing array according to the detected inertia for reducing power consumption. Besides, an optical navigation apparatus includes a detecting circuit and a determining unit. The detecting circuit is arranged for detecting a moving inertia of a feature point. The determining circuit is coupled to the detecting circuit, and arranged for determining an effective sensing region of an image sensing array according to the detected moving inertia for reducing power consumption.
Abstract:
There is provided a pupil tracking device including an active light source, an image sensor and a processing unit. The active light source emits light toward an eyeball alternatively in a first brightness value and a second brightness value. The image sensor captures a first brightness image corresponding to the first brightness value and a second brightness image corresponding to the second brightness value. The processing unit identifies a brightest region at corresponding positions of the first brightness image and the second brightness image as an active light image.
Abstract:
There is provided a gesture detection device including two linear image sensor arrays and a processing unit. The processing unit is configured to compare sizes of pointer images in the image frames captured by the two linear image sensor arrays in the same period or different periods so as to identify a click event.
Abstract:
There is provided an optical navigation device including at least one light source, an image sensor and a processing unit. The light source illuminates a work surface in a first brightness value and a second brightness value. The image sensor receives reflected light from the work surface and outputs a first image frame corresponding to the first brightness value and a second image frame corresponding to the second brightness value. The processing unit calculates a differential image of the first image frame and the second image frame and identifies an operating state according to the differential image.
Abstract:
A method and system provide light to project to an operation space so that a received image from the operation space will include, if an object is in the operation space, a bright region due to the reflection of light by the object, and identify a gesture according to the variation of a barycenter position, an average brightness, or an area of the bright region in successive images, for generating a corresponding command. Only simple operation and calculation is required to detect the motion of an object moving in the X, Y, or Z axis of an image, for identifying a gesture represented by the motion of the object.
Abstract:
A CMOS image sensor includes a pixel array unit, a row selection unit, and a logic circuit. The pixel array unit is used for sensing an object. The pixel array unit includes M pixels and P multiplexers and each of the M pixels is electrically connected to one of the P multiplexers, wherein M is a positive integer and P is a positive integer smaller than M. The row selection unit and the logic circuit are electrically connected to the P multiplexers. The row selection unit is used for generating a row selection signal. The logic circuit is used for determining a sensing region corresponding to the object wherein the sensing region includes N of the M pixels. Furthermore, the logic circuit controls Q multiplexers, which are electrically connected to the N pixels, to transmit the row selection signal to the N pixels.
Abstract:
There is provided a pointing system including a first image sensor, a second image sensor and a processing unit. The first image sensor is configured to capture a first image. The processing unit is configured to recognize a predetermined hand posture according to the first image and to identify a click event according to a second image captured by the second image sensor when the predetermined hand posture is recognized.
Abstract:
An exposure adjusting apparatus, which comprises: an image sensor, for catching an image according to an exposure parameter; a computing apparatus, for computing an exposure amount of the image and for determining whether the exposure amount is in a predetermined exposure range or not; and an exposure updating apparatus. If the exposure amount is in the predetermined exposure range, the exposure updating apparatus does not adjust the exposure amount. If the exposure amount is not in the predetermined exposure range, the exposure updating apparatus generates at least one adjusting amount according to at least one of the predetermined exposure range, the exposure amount and the exposure parameter, and utilizes the adjusting amount to increase or decrease the exposure parameter to generate a new exposure parameter.
Abstract:
An optical detecting apparatus, which comprises: a detecting surface; a first light source, for providing light parallel to the detecting surface; an image sensor, for detecting an object close to the detecting surface, to generate object image data; and an object location determining apparatus, for computing location information of the object according to the object image.
Abstract:
An image capturing apparatus comprising: a light source, for transmitting incident light to an objective without utilizing any medium besides air, such that the light emits from the objective to generate passing-through light; and a sensor, for capturing an image of the objective according to the passing-through light.