Abstract:
Aspects directed towards synchronizing out of coverage (OOC) vehicle-to-everything (V2X) communications are disclosed. In one example, a scheduled entity detects a loss of a synchronization signal associated with a V2X communication by detecting when a timing uncertainty value or error value is greater than a threshold value. Packet timing information is then received in response to the loss of the synchronization signal from at least one user equipment (UE) synchronized with the synchronization signal. The scheduled entity then maintains the V2X communication by performing a timing adjustment based on the packet timing information.
Abstract:
Methods, systems, and devices are described for managing power of a user equipment (UE). A UE modem may determine the state of charge of the battery to determine that the battery is in one of two or more charge state levels, and may invoke one or more modem power saving modes based on the charge state level. Power saving modes may include, for example, reducing a number of available receive chains in a UE, initiating a time delay between one or more frequency scan requests performed by the UE, reducing a rate of neighbor search requests performed by the UE, providing a buffer status report (BSR) parameter that indicates a reduced amount of buffer data relative to an actual amount of buffer data for the UE, and/or adjusting a maximum transmit power level for an uplink channel.
Abstract:
Embodiments include methods implemented by a processor of a mobile communication device for managing tune-aways by a radio frequency resource supporting a first subscription to support a second subscription. The processor may determine a data loss ratio of the data of a media file that is lost in transmission to the mobile communication device. The processor may compare the data loss ratio of the data to a first data loss ratio threshold and a second data loss ratio threshold, and the processor may block a tune-away event of the radio frequency resource from the first subscription to the second subscription in response to determining that the data loss ratio of the data is greater than the first data loss ratio threshold and less than the second data loss ratio threshold.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus is a UE. The UE transmits data packets. The UE determines to implement a flow control to reduce a transmission rate of the data packets. The UE determines whether the data packets include known or potential real-time data packets. The UE refrains from implementing the flow control to reduce the transmission rate of the known/potential real-time data packets when the data packets include known/potential real-time data packets.
Abstract:
Techniques for optimized cell acquisition for long term evolution (LTE) time division duplex (TDD) systems or closed subscriber group (CSG)/evolved Multicast Broadcast Multimedia Service (eMBMS) capable user equipments (UEs) are disclosed. A UE obtains configuration information, CSG capability information, and/or eMBMS capability information for a cell. The UE also stores the obtained information for the cell in a cell information database. In some aspects, the UE may employ the CSG and/or eMBMS capability information to select a weaker cell, during initial frequency scan at power up of the UE, based on cell capability. Additionally or alternatively, the UE may employ the configuration information to determine an initial mutual information (Mi) hypothesis value for physical hybrid-automatic repeat request (HART) indicator channel (PHICH) group mapping of the cell. Additionally or alternative, radio link failures and/or out of synch events may be predicted and proactive responses employed based on previously obtained solutions.
Abstract:
A method for wireless communication is disclosed. A time alignment timer is started. It is determined when the time alignment timer will expire. A time alignment request subframe that is prior to the time alignment timer expiring is identified. Uplink time alignment is requested in the time alignment request subframe.
Abstract:
A method for wireless communication is disclosed. A time alignment timer is started. It is determined when the time alignment timer will expire. A time alignment request subframe that is prior to the time alignment timer expiring is identified. Uplink time alignment is requested in the time alignment request subframe.
Abstract:
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station.
Abstract:
Aspects of the present disclosure provide techniques to enable enhanced machine type communication (s) (eMTC) and/or narrowband Internet-of-Things (NB-IoT) devices to transition to idle mode after releasing a connection, such as a radio resource control (RRC) connection, more quickly than with previously known techniques. An example method includes determining, based on an indication received in a narrowband signal on a narrowband region of a bandwidth comprising a plurality of narrowband regions, whether to wait for a delay period, determined based on a configuration received from a network entity, before releasing a radio resource control (RRC) connection and releasing the RRC connection at a time in accordance with the determination.
Abstract:
Methods and apparatus for selection of radio access technology (RAT) based on device usage patterns are provided. A User Equipment (UE) obtains information relating to one or more Quality of Service (QoS) metrics for communication of data by the UE. The UE designates a Radio Access Technology (RAT) from a plurality of available RATs as a preferred RAT for the communication, based on the obtained information.