Abstract:
The invention relates to a method for charging the energy storage cells of an energy storage device, which comprises: n first output connections, wherein n>1, for issuing a supply voltage at each of the output connections, a second output connection, wherein a charging device can be connected between the first output connections and the second output connection, and n parallel-connected energy supply branches, which are each coupled between a first output connection and the second output connection, wherein each of the energy supply branches comprises a plurality of series-connected energy storage modules, which each comprise an energy storage cell module comprising at least one energy storage cell, and a coupling device having coupling elements that are designed to selectively connect or bridge the energy storage cell module in the respective energy supply branch. The method according to the invention comprises the following steps: determining a maximum possible charging voltage of a charging apparatus, which provides a charging voltage for the energy storage device; determining the maximum number of the energy storage cell modules of an energy supply branch at which the sum of the output voltages of the energy storage cell modules, which is dependent on the instantaneous charge states of the energy storage cells of all the energy storage cell modules of an energy supply branch, is still lower than the maximum possible charging voltage; and selecting and controlling the coupling elements of energy storage modules of the energy supply branch, such that in each case only the maximum number of energy storage cell modules is coupled into the energy supply branch.
Abstract:
A damping circuit for an energy storage device. The damping circuit comprises a current detection device designed to detect an output current of energy supply strings or the energy storage device and to generate an output current signal dependent on the output current. The damping circuit also includes a closed-loop control circuit coupled to the current detection device. The closed-loop control circuit designed to adjust the output current signal to a setpoint current signal and to output a corresponding current control signal. A first winding of a transformer is coupled to an output connection of the energy storage device. A second winding is galvanically isolated from the first winding. A compensation current generation device is coupled to the closed-loop control circuit, and is designed to feed a compensation current into the second winding of the transformer depending on the current control signal.
Abstract:
The invention relates to a capacitor (1), particularly an intermediate circuit capacitor for a multiphase system, having a plurality of identical capacitor elements (10), which are connected in parallel and together form the capacitor (1), wherein at least one intermediate space (20) is formed between the capacitor elements (10), at least one intermediate capacitor element (30) is arranged in the intermediate space (20) and is connected in parallel to the capacitor elements (10), and thus together with the capacitor elements (10) forms the capacitor (1).
Abstract:
The invention relates to a capacitor (1), particularly an intermediate circuit capacitor for a multiphase system, with a first voltage layer (11) and a second voltage layer (21), the first voltage layer (11) and the second voltage layer (21) forming an overlapping region (4) in which the first voltage layer (11) and the second voltage layer (21) are parallel to each other and arranged directly one above the other, at a distance from each other by means of a gap (5), on a base side (6) of the capacitor (1), with at least one capacitor structure (3) comprising at least one dielectric (2), arranged on an upper side (13) of the first voltage layer (11), facing away from the second voltage layer (21), the first voltage layer (11) being in electroconductive contact with a first terminal (15) of the capacitor structure (3) and the second voltage layer (21) being in electroconductive contact with a second terminal (25) of the capacitor structure (3) by means of a contacting element (30). According to the invention, the first voltage layer (11) has at least one recess (14) through which the contacting element (30) is guided.
Abstract:
The invention relates to an arrangement comprising a first electrical component, which has a pair of flat, spaced-apart first connection lugs, a second electrical component, which has a pair of flat, spaced-apart second connection lugs, wherein the first and second connection lugs are in each case connected in pairs in an electrically conductive manner, and an electrically conductive plate which is electrically insulated from the first and second connection lugs and which is arranged below the first and second connection lugs in the plane of the surfaces of the first and second connection lugs.
Abstract:
A battery cell (10), having a low-inductance, capacitive parallel path interconnected between the poles of the battery cell (10), wherein the parallel path is embodied as a discrete capacitor (11).
Abstract:
The invention relates to an energy storage device (1) for generating an n-phase supply voltage, wherein n≧1, comprising n energy supply branches connected in parallel, which are each coupled to a respective output connection (1a, 1b, 1c) of the energy storage device (1), wherein each of the energy supply branches has a plurality of energy storage modules (3) connected in series. The energy supply branches each have a respective energy storage cell module (5), which has at least one energy storage cell (5a, 5n), and a respective coupling device (7) having first coupling elements (7a, 7b, 7c, 7d), which are designed to selectively connect the energy storage cell module (5) into the respective energy supply branch or bypass the energy storage cell module. At least one of the energy supply branches has at least one second coupling element (8), which is coupled between output connections of energy storage cell modules (5) that are adjacent in the at least one energy supply branch and which is designed to connect the coupled energy storage cell modules (5) into the respective energy supply branch in parallel with each other.
Abstract:
Switchable energy storage device (10), having: —at least two energy storage modules (1) connected in series, wherein each energy storage module (1) comprises at least one electrical energy storage cell (3) which can be connected into an operating current circuit by means of a semiconductor switch (2), characterized in that the energy storage device (10) has an electrically isolated, inductive coupling device (5) for charging the energy storage cells (3).
Abstract:
A damping circuit for an energy storage device. The damping circuit comprises a current detection device designed to detect an output current of energy supply strings or the energy storage device and to generate an output current signal dependent on the output current. The damping circuit also includes a closed-loop control circuit coupled to the current detection device. The closed-loop control circuit designed to adjust the output current signal to a setpoint current signal and to output a corresponding current control signal. A first winding of a transformer is coupled to an output connection of the energy storage device. A second winding is galvanically isolated from the first winding. A compensation current generation device is coupled to the closed-loop control circuit, and is designed to feed a compensation current into the second winding of the transformer depending on the current control signal.
Abstract:
The invention relates to a conductor assembly (1), in particular for use in electric vehicles or hybrid vehicles, comprising at least one planar first current-conducting component (10) having a first outer face (12) and a first inner face (13) facing away from the first outer face (12), and comprising at least one planar second current-conducting component (20) having a second outer face (22) and a second inner face (23) facing away from the second outer face (22), wherein the second current-conducting component (20) is arranged in such a way that the second inner face (23) of the second current-conducting component (20) is opposite the first inner face (13) of the first current-conducting component (10). According to the invention, a first coating (18) is applied to the first inner face (13) of the current-conducting component (10), wherein the material of the first coating (18) has a lower electrical conductivity than the material of the first current-conducting component (10) and/or that a second coating (28) is applied to the second inner face (23) of the second current-conducting component (20), wherein the material of the second coating (28) has a lower electrical conductivity than the material of the second current-conducting component (20).