Abstract:
The invention relates to a two-stroke engine for a portable handheld work apparatus such as a motor chain saw. The combustion chamber (3), which is configured in a cylinder (2), is delimited by a piston (5) which drives a crankshaft (7) rotatably journalled in a crankcase (4). The crankcase (4) is connected to the combustion chamber (3) via a transfer channel (14). A first end (20) of the transfer channel (14) opens into the combustion chamber (3) via an entry window (12, 15) lying in the cylinder wall (16); whereas, the second end (19) of this transfer channel (14) is open toward the crankcase (4). The transfer channel (14) is connected between its ends (19, 20) to an air channel (22a, 22b) via a check valve (21). The air channel (22a, 22b) supplies essentially fuel-free gas via a throttle (31) having an adjustable throttle element (33). A mixture-preparation device (8) is provided for the air/fuel mixture downstream of an air filter (42) in the flow direction of the combustion air. The air/fuel mixture is supplied via an inlet (11) to the crankcase (4). In order to meter clean air to the air channels in a controlled manner, an adjustable throttle element (33) is mounted in a throttle channel (36) of an independent throttle housing (31) and the throttle channel (36) is connected upstream of the throttle element to the clean space (51) of the air filter (42) connected ahead of the mixture-preparation device (8).
Abstract:
A diaphragm-type carburetor is provided for a two-cycle engine, in a manually guided implement, that operates with layered scavenging. Formed in the carburetor housing is an intake channel portion in which is disposed a butterfly valve that is pivotably held by a shaft. Opening into the intake channel portion are fuel-conveying channels supplied from a fuel-filled control chamber that is formed on a longitudinal side of the intake channel portion in the carburetor housing and is separated from a compensation chamber by a diaphragm. Air for combustion is additionally supplied to the engine via an air channel formed in a functional component of the carburetor fixed on the housing thereof on a longitudinal side of the intake channel portion. The air channel is disposed approximately parallel to the intake channel portion and is guided from that end face of the carburetor that faces an air filter to the connecting side of the carburetor that faces the internal combustion engine. Disposed in the air channel is a throttle member that is rotatably held by a shaft, which is coupled together with the shaft of the butterfly valve by means of a transmission connection.
Abstract:
The invention is directed to a carburetor for an internal combustion engine and includes an intake channel having a throttle flap mounted therein. Fuel passes from a fuel-filled control chamber via channels to main and idle nozzles through which the fuel enters the intake channel. The maximum permissible fuel quantity must be adjusted during a test run be means of an adjusting screw. This value can be changed by an operator. The maximum flow cross section for the fuel throughput is limited by at least one fixed throttle to which the main nozzle and the idle chamber are connected at the downstream end. In this way, strict exhaust-gas limit values are maintained. An adjustable throttle is provided with the aid of which the entire flow cross section can be reduced up to a pregiven minimum value. The carburetor described above is especially suitable for two-stroke engines of portable handheld work apparatus.
Abstract:
The invention is directed to a membrane fuel pump for a membrane carburetor of an internal combustion engine. The carburetor has a pressure controller and the engine has a crankcase wherein pressure fluctuates during the operation thereof. The membrane fuel pump includes a pump membrane mounted in a housing which partitions a space of the housing into a pump chamber for receiving fuel from a fuel supply connection and a drive chamber. The drive chamber is charged with the pressure of the crankcase. A pressure connection connects the pump chamber to the pressure controller of the membrane carburetor. A bypass channel connects the pressure connection to the fuel supply connection and a valve is interposed between the pressure connection and the bypass channel. This valve is responsive to the pressure present in the pressure connection for switching the valve between a first position wherein the bypass channel is open to the pressure connection and a second position wherein the bypass channel is closed to the pressure connection.
Abstract:
The invention is directed to an adjustment safeguard for an adjusting screw rotatably held in a housing. The adjusting screw has a head which projects outside of the housing and a cap is mounted on the head of the adjusting screw so as to be accessible to an operator for imparting a rotational movement thereto. The cap has an appendage formed thereon and stops are provided which coact with the appendage to delimit the rotational range through which the adjusting screw can be rotated. A sleeve is disposed in surrounding relationship to the cap and is connected thereto. The cap is disposed almost entirely within the sleeve so that an operator cannot reach the cap for levering the latter off the adjusting screw without causing permanent visible damage to the safeguard. Accordingly, an effective tampering with the adjusting screw for obtaining a setting outside of the permitted adjusting range is effectively prevented since such a tampering will leave permanent visible damage.
Abstract:
The invention relates to a carburetor for an internal combustion engine and especially for a portable small engine. The carburetor includes a carburetor housing defining an intake pipe and a control chamber which communicates with the intake pipe via intake channels. A fuel-feed line which is closable by an inlet valve opens into the control chamber. The inlet valve includes a valve seat formed in the fuel-feed line and a valve body mounted on a positioning lever which is connected to a membrane defining a wall of the control chamber. The positioning lever can be pivotally actuated to open the inlet valve to admit fuel into the control chamber. An actuating lever is pivotally mounted on the carburetor housing and can be pivoted from a rest position to an active position whereat the actuating lever applies a force against the membrane to displace the latter and pivotally actuate the positioning lever to immediately open the inlet valve when starting the engine.
Abstract:
A carburetor for internal combustion engines, especially for very small portable engines. The carburetor has a control chamber arranged in the carburetor in the fuel supply to the intake pipe. The control chamber is connected with the intake pipe via inlet passages, the rate or quantity of flow through which can be regulated, and is connected with fuel feed supplied by a fuel pump via an inlet valve, which is biased in the closed position. The inlet valve is opened by a control membrane which delimits the control chamber. The control membrane, on that side thereof remote from the control chamber, delimits an equalizing chamber along with a closure cover fastened to the carburetor housing. The equalizing chamber is constructed as a pressure chamber which can be selectively connected via a reversing or change-over valve with either the crankcase housing of the internal combustion engine, or with the atmosphere.