Abstract:
In one embodiment, a non-transitory computer readable medium may include computer-executable instructions that, when executed by a processor, may receive a first set of data associated with a user, receive a second set of data associated with one or more lockout procedures performed by the user, receive a request to actuate a locking mechanism of an electronic lock configured to prevent a machine in an industrial automation application from being operational, and send a signal to the electronic lock to actuate the locking mechanism when the second set of data indicates that the lockout procedures have been performed by the user and the data corresponds to an authorized user.
Abstract:
A template for implementing a control system with security features provides a generic control program and device programs for distribution to one or more industrial controllers and associated control devices together with matching security programs for distribution to the control devices, the security programs providing for the generation of security thumbprints indicating the state of the control devices. The template may also be associated with a security-monitoring program that can receive and process the security thumbprints.
Abstract:
The present disclosure generally relates to a method for performing industrial automation control may include detecting, via a sensor system, positions and/or motions of a human in an industrial automation system, determining at least one derivative value from the detected positions and/or motions, and determining a possible automation command and an undesirable condition based upon the detected positions and/or motions and the at least one derivative value. The method may then include implementing a control and/or notification action based upon the determined possible automation command and the undesired condition.
Abstract:
An industrial controller resistant to malicious attacks may provide a graduated response employing the elements of the control system to reduce access to the control system, log data, and announce intrusion based on a dynamically evolving assessment of the severity of any detected security issues.
Abstract:
The present disclosure generally relates to a method for performing industrial automation control in an industrial automation system. As such, the method may include detecting, via a sensor system, positions and/or motions of a human. The method may then include determining a possible automation command corresponding to the detected positions and/or motions. After determining the possible automation command, the method may implement a control and/or notification action based upon the detected positions and/or motions.
Abstract:
In one embodiment, a system may include a multi-purpose sensor coupled to a machine operating in an industrial environment. The multi-purpose sensor may include a camera that obtains a first and second set of image data including images of the machine and an environment surrounding the machine. The first set of image data is associated with a baseline of the machine and the environment, and the second set of image data is acquired subsequent to when the first set is acquired. The system may include a computing device that may include a processor to receive the first and second set of image data, determine baseline positions of objects in the first set, determine subsequent positions of the objects in the second set, determine whether the subsequent positions vary from the baseline positions, and perform an action when the subsequent positions vary from the baseline positions.
Abstract:
An energy management system may include a plurality of industrial automation devices and a first energy agent embedded within an industrial automation device of the plurality of industrial automation devices. The first energy agent may monitor one or more energy properties that correspond to the industrial automation device. Also, the first energy agent may adjust one or more operations of the industrial automation device based at least in part on the energy properties and an energy objective.
Abstract:
An industrial control configuration can be a dynamic entity where different controllers are added, are subtracted, fail, etc. When dynamic functions occur, bindings of the configuration can benefit from a modification. Therefore, automatic adjustment of bindings can occur to facilitated improved operation. Automatic adjustment can be practiced when the industrial control configuration is a distributed control configuration without reliance upon a central database.
Abstract:
An energy management system may include a plurality of industrial automation devices and a first energy agent embedded within an industrial automation device of the plurality of industrial automation devices. The first energy agent may monitor one or more energy properties that correspond to the industrial automation device. Also, the first energy agent may adjust one or more operations of the industrial automation device based at least in part on the energy properties and an energy objective.
Abstract:
An industrial control programming development platform simplifies generation of an industrial control program and associated tag definitions by generating at least a portion of the control program and tag definitions based on analysis of digital engineering drawings of an automation system to be monitored and controlled. This drawing-based program generation includes creation and configuration of smart data tags that model and contextualize controller data at the device level for processing by higher level analytic systems. This device-level contextualization can be based in part on inferences drawn from the digital engineering drawings.