Abstract:
Various system embodiments comprise a neural stimulator, a pulse generator, and a controller. The neural stimulator is adapted to generate a neural stimulation signal. The pulse generator is adapted to generate a pacing signal to provide myocardium pacing. The controller is adapted to control the neural stimulator and the pulse generator to provide a cardioprotective conditioning therapy. The conditioning therapy includes neural stimulation to elicit a parasympathetic response and myocardium pacing. Other aspects and embodiments are provided herein.
Abstract:
An apparatus and method for reversing ventricular remodeling with electro-stimulatory therapy. A ventricle is paced by delivering one or more stimulatory pulses in a manner such that a stressed region of the myocardium is pre-excited relative to other regions in order to subject the stressed region to a lessened preload and afterload during systole. The unloading of the stressed myocardium over time effects reversal of undesirable ventricular remodeling.
Abstract:
An implantable cardiac protection pacing system delivers pacing pulses to protect the heart from injuries associated with ischemia and myocardial infarction. The system includes an implantable pulse generator (PG) that delivers the pacing pulses and a coronary stent electrically connected to the implantable PG to function as a pacing electrode through which the pacing pulses are delivered. In one embodiment, an intravascular lead provides the electrical connection between the coronary stent and the implantable PG to allow the implantable PG to be implanted in the femoral region. In another embodiment, the coronary stent and the implantable PG are integrated into an intravascular pulse generator-stent.
Abstract:
A method for treating patients after a myocardial infarction which includes pacing therapy is disclosed. A cardiac rhythm management device is configured to deliver pre-excitation pacing to one or more sites in proximity to an infarcted region of the ventricular myocardium. Such pacing acts to minimize the remodeling process to which the heart is especially vulnerable immediately after a myocardial infarction.
Abstract:
A cardiac rhythm management system modulates the delivery of pacing and/or autonomic neurostimulation pulses based on heart rate variability (HRV). An HRV parameter being a measure of the HRV is produced to indicate a patient's cardiac condition, based on which the delivery of pacing and/or autonomic neurostimulation pulses is started, stopped, adjusted, or optimized. In one embodiment, the HRV parameter is used as a safety check to stop an electrical therapy when it is believed to be potentially harmful to continue the therapy.
Abstract:
A system delivers cardiac pacing therapy and chemical and/or biological therapy to modulate myocardial tissue growth in a heart after myocardial infarction (MI). The system includes an agent delivery device to release one or more agents to an MI region to modulate myocardial tissue growth in that region, and a cardiac rhythm management (CRM) device to deliver pacing pulses to enhance the effects of the one or more agents by altering myocardial wall stress and cardiac workload. In one embodiment, the system is an implantable system including an implantable agent delivery device and an implantable CRM device.
Abstract:
An aspect relates to an implantable medical device. An embodiment of the device comprises a pulse generator, sensor circuitry, a lead, and a controller. The pulse generator generates baroreflex stimulation pulses. The lead is adapted to be electrically connected to the pulse generator and to the sensor circuitry. The lead includes an electrode to distribute the baroreflex stimulation pulses to a baroreflex site and a pressure sensor to provide a signal indicative of blood pressure to the sensor circuitry. The controller is connected to the pulse generator and the sensor circuitry. The controller adapted to adjust the baroreflex stimulation pulses based on the blood pressure. Other aspects are provided herein.
Abstract:
Pacing pulses are delivered to one or more cardiac regions to improve diastolic performance in patients having diastolic dysfunction and/or heart failure. A cardiac pacing system executes a pacing algorithm using a parameter indicative of the diastolic performance as an input. The pacing pulses excite the one or more cardiac regions to redistribute the loading on the ventricular wall during diastole, thereby improving the diastolic performance by lowering the degree of cardiac wall motion dyssynchrony associated with diastolic dysfunction.
Abstract:
Methods of cardiac pacing involve sensing left ventricular electrical rhythms, sensing left ventricular blood flow rate, and sensing a coronary vein blood temperature. The methods further involve modifying delivery of synchronized electrical signals to the patient's heart based at least in part on the sensed coronary vein blood temperature and sensed left ventricular flow rate.
Abstract:
Pacing left and right ventricles of the heart for delivery of heart failure therapy involves measuring right ventricular (RV) pressure and a left ventricular (LV) pressure, and computing a parameter developed from one or both of the RV and LV pressure measurements. The parameter is indicative of a degree of left and right ventricular synchronization. At least one parameter of a heart failure pacing therapy is adjusted based on the parameter to improve synchronization of the right and left ventricles.