摘要:
An aspect relates to an implantable medical device. An embodiment of the device comprises a pulse generator, sensor circuitry, a lead, and a controller. The pulse generator generates baroreflex stimulation pulses. The lead is adapted to be electrically connected to the pulse generator and to the sensor circuitry. The lead includes an electrode to distribute the baroreflex stimulation pulses to a baroreflex site and a pressure sensor to provide a signal indicative of blood pressure to the sensor circuitry. The controller is connected to the pulse generator and the sensor circuitry. The controller adapted to adjust the baroreflex stimulation pulses based on the blood pressure. Other aspects are provided herein.
摘要:
An aspect of the present subject relates to an implantable medical system. An embodiment of the system includes a baroreflex stimulator, a myocardial infarction detector, and a controller. The baroreflex stimulator applies a baroreflex stimulation signal through an electrode. The myocardial infarction detector detects an event indicative of myocardial infarction, The controller is connected to the baroreflex stimulator and to the myocardial infarction detector, and is adapted to apply a baroreflex therapy in response to a detected event indicative of myocardial infarction. Other aspects are provided herein.
摘要:
Disclosed herein, among other things, is a method for stimulating neural targets in the vicinity of a human ear. According to an embodiment, a device is clipped on a patient ear lobe, the device including a neural stimulation electrode. A neural stimulation signal is applied to the electrode to transcutaneously stimulate neural targets in the vicinity of the ear lobe, according to an embodiment. A physiological parameter is sensed using a sensor connected to the device. According to an embodiment, the neural stimulation signal is adjusted in response to the sensed parameter. The method is used is a variety of treatment regimens, including anti-hypertensive and cardiac improvement therapy.
摘要:
A vagus nerve neurostimulator system with multiple patient-selectable modes for treating chronic cardiac dysfunction is provided. An implantable neurostimulator includes a pulse generator coupled to a therapy lead terminated by a pair of helical electrodes positioned over a cervical vagus nerve. The pulse generator is configured to deliver through the helical electrodes continuously-cycling, intermittent and periodic electrical stimulation that is parametrically defined to bi-directionally propagate through nerve fibers in the cervical vagus nerve. The implantable neurostimulator includes a magnetic switch configured to switch the pulse generator between a plurality of operating modes that are each separately selectable in response to a unique and remotely-applied magnetic signal. An external controller includes patient-actuatable controls configured to enable selection of one of the operating modes of the pulse generator. The external controller includes an electromagnetic transmitter configured to output the magnetic signal uniquely associated with the operating mode as selected with the controls.
摘要:
Various system embodiments comprise a neural stimulator, a premature ventricular contraction (PVC) event detector, a heart rate detector, an analyzer, and a controller. The neural stimulator is adapted to generate a stimulation signal adapted to stimulate an autonomic neural target. The analyzer is adapted to, in response to a PVC event signal from the PVC event detector, generate an autonomic balance indicator (ABI) as a function of pre-PVC heart rate data and post-PVC heart rate data. Other aspects and embodiments are provided herein.
摘要:
Various system embodiments comprise a neural stimulator and a controller. The neural stimulator is adapted to generate a stimulation signal adapted to elicit sympathetic activity at a neural target. The controller is adapted to control the neural stimulator to provide a physical conditioning therapy. The controller is adapted to control the neural stimulator to intermittently elicit sympathetic activity at the neural target. Other aspects and embodiments are provided herein.
摘要:
A neural stimulation system includes a safety control system that prevents delivery of neural stimulation pulses from causing potentially harmful effects. The neural stimulation pulses are delivered to one or more nerves to control the physiological functions regulated by the one or more nerves. Examples of such harmful effects include unintended effects in physiological functions associated with autonomic neural stimulation and nerve injuries caused by excessive delivery of the neural stimulation pulses.
摘要:
An adherent device to monitor a tissue hydration of a patient comprises an adhesive patch to adhere to a skin of the patient. At least four electrodes are connected to the patch and capable of electrically coupling to the patient. Impedance circuitry is coupled to the at least four electrodes to measure a tissue resistance of the patient, where the circuitry is configured to determine the tissue hydration in response to tissue resistance. The circuitry may comprise a processor system and the tissue resistance may correspond to a change in patient body fluid. The impedance circuitry is configured to measure the hydration signal using at least one low measurement frequency, which may be in the range of 0 to 10 kHz. Multiple measurement frequencies may be used and the hydration signal may include a tissue reactance measurement.
摘要:
Various device embodiments comprise a pulse generator, a signal processing module and a controller. The pulse generator is adapted to provide a neural stimulation signal to be applied at a neural simulation site within an autonomic nervous system (ANS). The signal processing module is adapted to receive and process sensed neural traffic at a neural sensing site within the ANS. The controller is connected to the pulse generator and adapted to provide a neural stimulation control signal to the pulse generator to generate the neural stimulation signal, and to the signal processing module to receive a feedback control signal indicative of the sensed neural traffic. The controller is adapted to adjust the neural stimulation control signal to adjust at least one parameter of the neural stimulation signal to converge on desired sensed neural traffic at the neural sensing site. Other aspects and embodiments are provided herein.
摘要:
An aspect of the present subject matter relates to a baroreflex stimulator. An embodiment of the stimulator includes a pulse generator to provide a baroreflex stimulation signal through an electrode, and a modulator. The modulator modulates the baroreflex stimulation signal to increase the baroreflex stimulation therapy by a predetermined rate of change to lower systemic blood pressure to a target pressure. Other aspects are provided herein.