Abstract:
The present invention relates to a coated paper article with an intermediate basecoat layer comprising high void fraction porous hollow sphere polymer particles (HISPs). HSPs with very small pore area density and high void fraction result in increased optical density at a given print energy in thermal printing applications.
Abstract:
The present invention relates to a composition comprising an aqueous dispersion of a thermosettable compound and polymer particles functionalized with aminoalkyl ester groups. The composition is useful as a two-component waterborne curing system and is effective in providing corrosion and blister resistance in industrial coatings applications.
Abstract:
The present invention relates to a method comprising the steps of applying to a paper or paperboard substrate an aqueous dispersion of polymer particles which comprise structural units of a vinyl ester, vinyl alcohol, and an acrylate monomer, then drying the composition. The method provides a coating that has oil and grease resistance, mineral oil barrier performance, and beat scalability.
Abstract:
The present invention relates to a method comprising the steps of: a) contacting an acrylate monomer, a carboxylic acid monomer, and a chain transfer agent under free radical polymerization conditions to form a solution of a polymer having an Mn in the range of from 5,000 to 50,000 Daltons; b) contacting the solution with a base and an ethylenically unsaturated glycidyl functionalized monomer to form a solution of an ethylenically unsaturated acrylate polymer; c) contacting the solution of the ethylenically unsaturated functionalized acrylate polymer with water to form an aqueous dispersion of ethylenically unsaturated functionalized acrylate polymers; and d) removing the organic solvent. The method of the present invention provides a composition suitable for use as a UV curable coating that achieves an excellent balance of hardness, flexibility, and warmth with less reliance on costly MFAs.
Abstract:
The present invention relates to a process for preparing a coatings composition with an open time additive comprising the steps of a) contacting an aqueous dispersion of alkali swellable polymer particles with a rheology modifier and a binder to form a coatings composition with a VOC of less than 50 g/L; and b) neutralizing the alkali swellable particles with a non-volatile base after or upon contact with the rheology modifier and the binder to form swelled multi-staged polymer particles; wherein the alkali swellable polymer particles comprise a shell having a Tg of not greater than 25° C. and an acid functionalized core; and wherein the core-to-shell ratio is in the range of from 1:3.2 to 1:10. The composition arising from the process of the present invention is useful for improving open time, especially for low VOC coatings applications.In another aspect the present invention relates to the preparation of the coatings composition with an open time additive comprising the steps of a) contacting the open time additive with a rheology modifier and a binder to form a coatings composition with a VOC of less than 50 g/L, then b) neutralizing the open time additive to form swelled multi-staged polymer particles, wherein the coatings composition with the open time additive exhibits less than a 50% increase in viscosity than the coating composition without the open time additive.
Abstract:
The present invention relates to a thermally printable paper article with an elastomeric underlayer, which imparts improved printing performance.
Abstract:
The present invention relates to a thermally printable paper article with an elastomeric underlayer, which imparts improved printing performance.
Abstract:
The present invention is a composition comprising an aqueous dispersion of a binder and a salt of the following fluoroalkyl phosphonic acid: wherein n, q, and p are as described herein. The composition of the present invention is useful as a block additive in coating compositions.
Abstract:
The present invention provides low solvent or substantially solvent-free multi-ethylenically unsaturated acrylate composition imbibed particles of an acid functional group containing acrylic polymer for ultraviolet curing coating applications and methods of making the same wherein the acrylic polymer is formed by polymerizing in organic solvent, then neutralized and combined with a multi-ethylenically unsaturated acrylate composition prior to dispersing the mixture into water and, preferably, removing solvent.