Abstract:
A method for selecting a Multiple-Input Multiple-Output (MIMO) mode based on energy efficiency and selecting an antenna subset to be used in a communication, in a wireless communication system using a multi-user massive multi-antenna is provided. The method selects an antenna subset capable of minimizing transmission power without using all antennas, based on power consumed by an Radio Frequency (RF) circuit as well as the transmission power. The method further includes selecting a mobile station to which the signal is to be transmitted, selecting a multi-antenna technique based on power consumption of all antennas, selecting an antenna subset to transmit the signal to the mobile station among all the antennas, and transmitting the signal to the mobile station by using the antenna subset.
Abstract:
A semiconductor device includes pads of a first group and a plurality of first peripheral pads, which are adjacent to each other and spaced apart by a first horizontal gap in a first direction, and pads of a first group and a plurality of first peripheral pads, which are connected to each other and spaced apart by a first vertical gap, greater than the first horizontal gap, in a second direction. A plurality of first wiring patterns include first horizontal extension portions extending at an angle exceeding about 45 degrees with respect to the first direction within the first horizontal gap.
Abstract:
Disclosed are an electronic device for compensating for geomagnetic sensing data and a method for controlling the same. According to an embodiment of the disclosure, an electronic device may include a processor configured to store, in a memory, a temperature of each of a plurality of heating areas and a variation in a geomagnetic value sensed by a geomagnetic sensor, perform linear fitting using the temperature and the variation in the geomagnetic value, compute an error between the variation in the geomagnetic value and an estimated value for the variation in the geomagnetic value, based on a result of the linear fitting, determine a scheme for compensating for the geomagnetic value based on the computed error, and compensate for the geomagnetic value sensed by the geomagnetic sensor using the determined scheme when a variation in temperature is detected for at least one heating area in the plurality of heating areas.
Abstract:
Disclosed in various embodiments of the present invention are a method and a device, the device comprising: an antenna module configured to form a plurality of beams having different directions; and a processor operatively connected to the antenna module, wherein the processor is configured to select a partial reception beam from among a plurality of reception beams, measure the reception power of the selected reception beam, determine a transmission condition through an artificial neural network on the basis of the measured reception power, and determine a reception beam for a communication connection by using the artificial neural network corresponding to the transmission condition. Various embodiments are possible.
Abstract:
An electronic device according to various embodiments of the present invention may include a communication circuit, and a processor operatively connected with the communication circuit, and the processor may be configured to detect that a reception beam for a first base station is changed, and change a reception beam for a second base station based on first change information of the reception beam for the first base station. Other embodiments are also possible.
Abstract:
An electronic device may receive discontinuous reception (DRX) cycle information from a first cell, may receive synchronization signal block measurement timing information including synchronization signal block measurement window information and synchronization signal block measurement period information, and may receive at least part of a first synchronization signal block from the first cell and at least part of a second synchronization signal block from a second cell neighboring the first cell, at a period indicated by the DRX cycle information based on the synchronization signal block measurement timing information. When reception timing of the first synchronization signal block and reception timing of the second synchronization signal block is less than a specified time duration, the device may receive the at least part of the first synchronization signal block in a first measurement window, and may receive the at least part of the second synchronization signal block within a second measurement window.
Abstract:
An electronic device is provided and includes a housing, an antenna module, a wireless communication circuit, a processor, and a memory. The memory stores a number of measurements and a threshold. The number of measurements is defined for measuring, by using a directional beam, a strength of a plurality of beams having different directions and generated by at least one external electronic device. The threshold is defined for changing a beam pair link for communication with the external electronic device. The memory stores instructions that cause, when executed, the processor to measure, based on the number of measurements, a strength of a first beam generated by a first external electronic device by using a first directional beam formed in a first direction through the antenna module, to measure, based on the number of measurements, a strength of a second beam generated by at least one of the first external electronic device or a second external electronic device by using a second directional beam formed in a second direction different from the first direction through the antenna module, and to adjust at least one of the stored number of measurements or the stored threshold based on at least the measured strengths of the first and second beams.
Abstract:
Disclosed are an apparatus and a method for selecting a beam in an electronic device. An electronic device includes: a plurality of antennas configured to form beams in different directions; and at least one processor, wherein the at least one processor is configured to: control the plurality of antennas to form a wide beam, determine a transmission beam pattern of a transmitting side through the wide beam, control the plurality of antennas to form a reception beam, and determine a reception beam pattern to be used for receiving a signal from the transmitting side.
Abstract:
A method and apparatus are provided for controlling multiple processors in order to reduce current consumption in electronic device. An electronic device includes an application processor (AP) configured to control a plurality of functions; a communication processor (CP) electronically connected to the AP; and a sensor module or a communication module electronically connected to the CP. When the AP enters a sleep state, the CP is configured to control at least one function among the plurality of functions based on information collected from the sensor module or the communication module according to a discontinuous reception (DRX) operating period.
Abstract:
Disclosed is a location detecting method of an electronic device including determining whether the electronic device enters a first region including a first location that is a specific path and/or specific region, when the electronic device enters the first region, selecting a signal type capable of being supported by the electronic device among a signal type list of items defined as moving path data corresponding to the first location, distinguishing the first data, in which a parameter feature is present, and second data having a maintenance pattern for a moving path, among the signal type, comparing first data of the moving path data with first data of measurement data measured by the electronic device, and when the first data of the moving path data corresponds to the first data of the measurement data, comparing patterns after pre-processing both second data of the moving path data and second data of the measurement data to determine whether to enter the first location.