Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transfer rate than a 4G communication system such as LTE. The present invention relates to channel estimation and equalization in a cellular environment on the basis of an FBMC transmission and reception technique. A communication method of a base station according to one embodiment of the present invention may comprise the steps of: determining a reference signal (RS) pattern building block of a plurality of cells according to filter information of the plurality of cells; determining an RS pattern of the plurality of cells by using the determined RS pattern building block and the size of a resource block (RB); and transmitting, to a terminal, information about the determined RS pattern. According to one embodiment of the present invention, it is possible to provide a method and an apparatus for mapping a reference signal in a multi-cell environment.
Abstract:
This disclosure relates to a 5G or a pre-5G communication system to be provided to support a higher data rate following 4G communication systems such as LTE. A method according to one embodiment of the present invention is a method for attenuating interference of a signal received in a receiver of a filter bank multicarrier (FBMC) system, the method comprising the steps of: separately extracting data and a reference signal in a received FMBC symbol; obtaining a diagonal element channel of a desired symbol through a channel estimation from the extracted reference signal; generating an interference channel matrix of a non-diagonal component of the desired symbol, a diagonal component and a non-diagonal component of an interference symbol using a channel estimated diagonal component; reconfiguring to a banded channel matrix using an interference channel matrix; and attenuating the interference contained in the extracted data using the reconfigured banded channel matrix information and filter information of a transmitter of the filter bank multicarrier system.
Abstract:
Methods and apparatuses are provided for controlling a transmission signal in a transceiver. Cyclic shift values that are applied to transmission signals are determined, when the transmission signals are to be transmitted through multiple layers. The transmission signals are cyclically shifted according to the cyclic shift values. The cyclically-shifted transmission signals are added. The added cyclically-shifted transmission signals are transmitted.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method and apparatus for transmitting and receiving signals using a variable observation length in a multi-carrier system using the non-orthogonal transmission signal. A receiver performs fast Fourier transform on reception vectors contained in the signal, equalizes the fast Fourier transformed reception vectors by a 1-tap zero forcing equalizer, and applies a reception filter based on the observation length to the equalized reception vectors. A transmitter includes a transceiver configured to transmit and receive a signal, and a controller configured to cause the transceiver to transmit an indicator for a Modulation and Coding Scheme (MCS) level to a receiver based on a channel state, and transmit a signal applied with the MCS level to the receiver.
Abstract:
An electronic device and a method are provided. The electronic device includes communication circuitry configured to receive signals from at least one user equipment (UE), and a processor, wherein the processor may be configured to determine a reception quality of a signal obtained through the communication circuitry, obtain an offset corresponding to a channel characteristic of the signal, determine, based on the offset indicating a signal quality difference corresponding to a difference between a reception dimension (Rx dimension) at signal reception and a target Rx dimension and the reception quality, an expected reception quality corresponding to the target Rx dimension, pre-schedule the target Rx dimension and a frequency resource to the at least one UE, determine an expected throughput for the at least one UE based on the expected reception quality, determine the target Rx dimension, and receive or transmit data from or to the UE.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for internet of things (IoT) includes intelligent services based on the 5G communication technology and the IoT-related technology. A method by a terminal for transmitting uplink data in a wireless communication system comprises receiving downlink control information for scheduling of uplink transmission in a cell from a base station and transmitting the uplink data to the base station on the supplementary uplink if the indicator indicates the scheduling of the uplink transmission is associated with the supplementary uplink in the cell. The downlink control information includes an indicator indicating whether the scheduling of the uplink transmission is associated with a supplementary uplink in the cell.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
The present disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data transfer rate after a 4th generation (4G) communication system such as long term evolution (LTE). A method for operating of a transmitting end in a wireless communication system includes allocating a first resource for a first service and a second resource for a second service, determining a precoder for controlling interference between the first service and the second service, precoding a first signal for the first service using the precoder, and transmitting the precoded first signal and a second signal for the second service through the first resource and the second resource. At least one part of the first resource overlaps with the second resource.
Abstract:
Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety related services, and the like) on the basis of 5G communication technology and IoT-related technology. According to the disclosure, a terminal of a communication system can transmit, to a base station, information related to a mobile characteristic or a channel time-varying characteristic, receive information related to reference signal transmission from the base station, generate a reference signal on the basis of the information related to reference signal transmission, and transmit the reference signal to the base station.
Abstract:
A method for a transmitter of a mobile communication system transmitting and receiving signals according to an embodiment of the present specification comprises the steps of: transmitting to a receiver system information for transmitting a signal to the receiver including a connection between a wireless resource and a transmitting antenna; transmitting a reference signal to the receiver based on the system information; and receiving from the receiver feedback information generated based on the reference signal. According to an embodiment of the present specification, in a beamforming transmission method of a mobile communication system, a transmitter can determine whether to perform digital pre-coding without advance information from a receiver and can consequently perform a transmission, and can thereby perform lower-overhead and efficient signal transmission/reception.