Abstract:
A method and system for monitoring a flexible pipe, including an inline sensor system coupled to the annulus of the flexible pipe to detect corrosion of the flexible pipe. Also disclosed are method and system for monitoring an amount of water being accumulated in an annulus of a flexible pipe, including locating a pressure measurement system proximate to the annulus for measuring pressure of gas inside the annulus; controlling a flow of vent gas with a vent gas valve; positioning a flow measurement system upstream or downstream of the vent gas valve for measuring the flow of the vent gas when the vent gas valve is opened; and collecting with a microprocessor pressure and flow measurement data from the pressure and the flow measurement systems for determining the amount of water accumulated in the annulus based on the collected pressure and flow measurement data.
Abstract:
A method and system for monitoring a flexible pipe, including an inline sensor system coupled to the annulus of the flexible pipe to detect corrosion of the flexible pipe. Also disclosed are method and system for monitoring an amount of water being accumulated in an annulus of a flexible pipe, including locating a pressure measurement system proximate to the annulus for measuring pressure of gas inside the annulus; controlling a flow of vent gas with a vent gas valve; positioning a flow measurement system upstream or downstream of the vent gas valve for measuring the flow of the vent gas when the vent gas valve is opened; and collecting with a microprocessor pressure and flow measurement data from the pressure and the flow measurement systems for determining the amount of water accumulated in the annulus based on the collected pressure and flow measurement data.
Abstract:
Optical window assemblies are provided. An example apparatus includes a first fixture defining a fluid flow passageway. The example apparatus also includes a second fixture defining an aperture. The second fixture is coupled to the first fixture. A first optical window is disposed in the aperture. The first optical window has a first end and a second end. The first end is to be in contact with fluid in the fluid flow passageway, and a cross-sectional size of the first optical window decreases from the first end toward the second end along a portion of the first optical window.
Abstract:
A subsea installation kit is described. The kit is provided with a subsea tree, a plurality of tubing sections, a plurality of acoustic repeaters and a mechanical filter. The subsea tree is configured to be coupled to a subsea well having a wellbore. The tubing sections are configured to be connected together to form a tubing string extending from above the tree into the wellbore. The acoustic repeaters are configured to be attached to the tubing string in a spaced apart manner. One of the acoustic repeaters is a last acoustic repeater configured to be attached to the tubing string within or above the tree. The mechanical filter is configured to be connected into the tubing string and form a part of the tubing string above the last acoustic repeater, the mechanical filter configured to cause an attenuation to acoustic signals propagating in the tubing string above the tree.
Abstract:
Optical window assemblies are disclosed herein. An example apparatus includes a first fixture defining a fluid flow passageway. The example apparatus also includes a second fixture defining an aperture. The second fixture is coupled to the first fixture. A first optical window is disposed in the aperture. The first optical window has a first end and a second end. The first end is to be in contact with fluid in the fluid flow passageway, and a cross-sectional size of the first optical window decreases from the first end toward the second end along a portion of the first optical window.