Abstract:
It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
Abstract:
Disclosed is a driver circuit including a latch circuit, a shift register circuit, and a switching circuit, where the latch circuit is provided over the shift register circuit and the switching circuit. The shift register circuit and the switching circuit may have a silicon-based semiconductor, while the latch circuit may have an oxide semiconductor. The latch circuit includes a first transistor and a second transistor connected in series. The latch circuit may further include a first capacitor and a second capacitor which are electrically connected to the first transistor and the second transistor. A display device using the driver circuit as well as a method for preparing the driver circuit is also disclosed.
Abstract:
As a result of miniaturization of a pixel region associated with an improvement in definition and an increase in a substrate size associated with an increase in area, defects due to precision, bending, and the like of a mask used at the time of evaporation have become issues. A partition including portions with different thicknesses over a pixel electrode (also referred to as a first electrode) in a display region and in the vicinity of a pixel electrode layer is formed, without increasing the number of steps, by using a photomask or a reticle provided with an auxiliary pattern having a light intensity reduction function made of a diffraction grating pattern or a semi-transmissive film.
Abstract:
As a result of miniaturization of a pixel region associated with an improvement in definition and an increase in a substrate size associated with an increase in area, defects due to precision, bending, and the like of a mask used at the lime of evaporation have become issues. A partition including portions with different thicknesses over a pixel electrode (also referred to as a first electrode) in a display region and in the vicinity of a pixel electrode layer is formed, without increasing the number of steps, by using a photomask or a reticle provided with an auxiliary pattern having a light intensity reduction function made of a diffraction grating pattern or a semi-transmissive film.
Abstract:
As a result of miniaturization of a pixel region associated with an improvement in definition and an increase in a substrate size associated with an increase in area, defects due to precision, bending, and the like of a mask used at the time of evaporation have become issues. A partition including portions with different thicknesses over a pixel electrode (also referred to as a first electrode) in a display region and in the vicinity of a pixel electrode layer is formed, without increasing the number of steps, by using a photomask or a reticle provided with an auxiliary pattern having a light intensity reduction function made of a diffraction grating pattern or a semi-transmissive film.
Abstract:
As a result of miniaturization of a pixel region associated with an improvement in definition and an increase in a substrate size associated with an increase in area, defects due to precision, bending, and the like of a mask used at the time of evaporation have become issues. A partition including portions with different thicknesses over a pixel electrode (also referred to as a first electrode) in a display region and in the vicinity of a pixel electrode layer is formed, without increasing the number of steps, by using a photomask or a reticle provided with an auxiliary pattern having a light intensity reduction function made of a diffraction grating pattern or a semi-transmissive film.
Abstract:
As a result of miniaturization of a pixel region associated with an improvement in definition and an increase in a substrate size associated with an increase in area, defects due to precision, bending, and the like of a mask used at the time of evaporation have become issues. A partition including portions with different thicknesses over a pixel electrode (also referred to as a first electrode) in a display region and in the vicinity of a pixel electrode layer is formed, without increasing the number of steps, by using a photomask or a reticle provided with an auxiliary pattern having a light intensity reduction function made of a diffraction grating pattern or a semi-transmissive film.
Abstract:
It is an object of the present invention to provide a method for preventing a breaking and poor contact, without increasing the number of steps, thereby forming an integrated circuit with high driving performance and reliability. The present invention applies a photo mask or a reticle each of which is provided with a diffraction grating pattern or with an auxiliary pattern formed of a semi-translucent film having a light intensity reducing function to a photolithography step for forming wires in an overlapping portion of wires. And a conductive film to serve as a lower wire of a two-layer structure is formed, and then, a resist pattern is formed so that a first layer of the lower wire and a second layer narrower than the first layer are formed for relieving a steep step.
Abstract:
An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
Abstract:
As a result of miniaturization of a pixel region associated with an improvement in definition and an increase in a substrate size associated with an increase in area, defects due to precision, bending, and the like of a mask used at the time of evaporation have become issues. A partition including portions with different thicknesses over a pixel electrode (also referred to as a first electrode) in a display region and in the vicinity of a pixel electrode layer is formed, without increasing the number of steps, by using a photomask or a reticle provided with an auxiliary pattern having a light intensity reduction function made of a diffraction grating pattern or a semi-transmissive film.